Multi-modal Multi-person Detection and Tracking based on Probabilistic Techniques

By: Hadi Ali Akbarpour

Supervisor: Professor Jorge Manuel Miranda Dias

Electrical and Computer Engineering Department, University of Coimbra

The Outlines

Using a dispersed network of sensors

Using several modalities, in addition to use a dispersed network

Dealing with data registration

Using two kinds of sensors arrangements: Static and Moving sensors)
 (By using a mobile robot in addition to the fixed sensors)

Human Presence Detection & Tracking

Using Bayesian techniques

The Signal Acquisition Devices

Video camera

A pan-tilt head

Laser Range Finder

Microphone

Mobile Robot

Institute of Systems and Robotics

Some proposed scenes and their configurations

Mobile Robotics Laboratory Institute of Systems and Robotics

ISR – Coimbra

The motivation of using a probabilistic framework

•For inference:

Data registration

- Spatial Data Registration
- temporal Data Registration

Mobile Robotics Laboratory

Institute of Systems and Robotics ISR – Coimbra

Spatial Data Registration

Commensurate Sensors

Non-Commensurate Sensors

Step 1- Calibrating the camera network

Step 2 Calibrating the camera network and LRF

Step 3- Calibrating the camera network and Mic. array

Having all sensors calibrated !

Our Setup for Camera Network Calibration Using Svoboda Toolbox

Camera No. 1

Camera No. 2

.

Camera No. 3

Camera No. 4

The scene

Cameras and Reconstructed Points by the Svoboda Calibration Toolbox

Extrinsic Calibration of Stereo Camera and 2D LRF

Configuration

 $P^{C_L} = R * P^{LRF} + t$

Rigid Coordinate Transformation

Coordinate systems convention

Institute of Systems and Robotics ISR – Coimbra

Calibration Steps

- •Step 1: Placing the laser pointer, somewhere out of the LRF's FOV which is planar.
- •Step 2: The LRF starts to capture range signals form the area of its view.
- •Step 3: The laser pointer has to be moved to hit the sensing plane of the LRF. (The times of these hitting must be registered)
- •Step 4: The stereo camera has to capture and register the images at the hitting times of the step 3.
- •Step 5: Repeating the steps 1 to 4, about 20 times, meanwhile that all of sensors are capturing the data.
- •Step 6: Extracting the laser pointer positions in the recorded frames by the stereo cameras and converting each paired 2D point to a single 3D point (a real world Cartesian coordinate).
- •**Step 7**: Converting the data recorded by LRF module (at the hitting moments) into a Cartesian coordinate, the same as step 6.
- •Step 8: Feeding the outputs of steps 6 and 7 to the GetProcrustes algorithm (which is described further) and get outputs. The outputs will be a rotation matrix and a translation vector between the stereo camera and the LRF coordinates.

A sample between 20 (N) recorded samples (synchronized)

Image captured by the right camera. The position of the laser pointer (red light) in this frame is (434,281) in pixel.

The LRF reported it as 133 cm and 62 degree (62.44,117.43) cm in its local frame

Temporal Data Registration

1- Synchronizing all PCs based on Network Time Protocol (NTP)

Time offsets between two PCs

2- Using a Network-Socket based data capturing architecture

Mobile Robotics Laboratory Institute of Systems and Robotics

ISR – Coimbra

Temporal Data Registration

The left figure shows the delays between recorded frames when just the starting time is the same. The right one shows is for the same subject when the described architecture is used. The values are in ms.

Constructing a Probabilistic Distance-Color Grid

Domains of the parameters and random variables

$$i \in \{1..m\}$$

$$j \in \{1..n\}$$

$$\rho_{SC}, \rho_{LRF}, \rho_{M} \in \Re^{+}$$

$$p(\rho_{SC}), p(\rho_{M}) \in [0,1]$$

$$p(\rho_{LRF}) \in \{0,1\}$$

```
c \in \text{color space}

p(c \in \text{skin\_color}) \in [0,1]

p(c \in background\_being) \in [0,1]

\text{md} \in \{left, left - top, left - down, top, down, right, right - down, right - up \}

p(md) \in [0,1]
```


Sources of information to fill each cell of the grid

Parameters of each cell is determined by fusing data from either all or some of the following sensors:

- 1- Stereo camera system
- 2- Semi-tilt Laser Range Finder
- **3- Microphones**

a) Finding some Strong feature of Strong Stro

2nd Source: Using tilt Laser Range Finder

It can be done in two phases:

- a) Finding intersection between laser planes and camera2's plane.
- a) Transforming each seen point by LRF into camera2's plane.

intersection between laser planes and camera2 plane (lines)

b) Transforming the range data in intersection lines into the probabilistic grad

Note: These points have a confidence probability near unit

Mobile Robotics Laboratory

Institute of Systems and Robotics ISR – Coimbra 3nd Source: Microphones

Classification of the distances inside the grid based on close values

			/		· _ /			/ /		/ /			· /		/	/ /		
									\square									$\overline{\mathcal{N}}$
24	395	648	47	757	543	616	27	363	24	395	648	47	757	543	616	27	363	M
722	642	510	965	886	379	597	321	401	722	642	510	965	886	379	597	321	401	Δ
886	304	599	66	369	849	685	52	514	886	304	599	66	369	849	685	52	514	
937	85	336	510	716	546	974	370	46	937	85	336	510	716	546	974	370	46	
925	885	723	705	286	815	280	384	991	925	885	723	705	286	815	280	384	991	μV
756	94	118	625	789	486	174	336	310	756	94	118	625	789	486	174	336	310	$\nu \nu$
377	951	520	227	205	116	922	891	256	377	951	520	227	205	116	922	891	256	
834	618	995	631	430	143	260	238	610	834	618	995	631	430	143	260	238	610	
687	761	313	153	629	785	375	81	447	687	761	313	153	629	785	375	81	447	
555	621	506	311	559	269	645	301	418	555	621	506	311	559	269	645	301	418	
86	579	820	649	246	557	316	180	412		579	820	649	246	557	316	180	412	
555	281	299	836	657	136	192	716	714	555	281	299	836	657	136	192	716	714	
679	100	709	18	132	425	233	790		679	100	709	18	132	425	233	790	103	
428	722	869	404	513	58	220	33		428	722	869	404	513	58	220	331	380	
163	841	656	800	274	797	79	782		163	841	656	800	274	797	79	782	752	
693	821	862	160	587	560	124	777		69	821	862	160	587	560	124	777	149	
24	395	648	47	757	543	616	27		24	395	648	47	757	543	616	27	363	
722	642	510	965	886	379	597	321	_\	72	642	510	965	886	379	597	321	401	
886	304	599	66	369	849	685	52	(88	304	599	66	369	849	685	52	514	
937	85	336	510	716	546	974	370		93	85	336	510	716	546	974	370	46	
925	885	723	705	286	815	280	384		* 975	885	723	705	286	815	280	384	991	
756	94	118	625	789	486	174	336		756	94	118	625	789	486	174	336	310	
377	951	520	227	205	116	922	891	256	377	951	520	227	205	116	922	891	256	
834	618	995	631	430	143	260	238	610	834	618	995	631	430	143	260	238	610	
687	761	313	153	629	785	375	81	447	687	761	313	153	629	785	375	81	447	
555	621	506	311	559	269	645	301	418	555	621	506	311	559	269	645	301	418	
86	579	820	649	246	557	316	180	412	86	579	820	649	246	557	316	180	412	
555	281	299	836	657	136	192	716	714	555	281	299	836	657	136	192	716	714	
679	100	709	18	132	425	233	790	103	679	100	709	18	132	425	233	790	103	
428	722	869	404	513	58	220	331	380	428	722	869	404	513	58	220	331	380	Y.
163	841	656	800	274	797	79	782	752	163	841	656	800	274	797	79	782	752	
693	821	862	160	587	560	124	777	149	693	821	862	160	587	560	124	777	149	

Classification of the distances inside the grid based on close values

Cooperation between static and mobile sensors

SHU: Static Heterogeneous Sensors Unit. **MHU**: Mobile Heterogeneous Sensors Unit.

CFACU: Central Fusing And Correcting Unit.

Thanks for your attention !

