

BACS-RM 2009 Project Review Meeting @ Zurich, Switzerland

Laban Movement Analysis: Towards Behavior Patterns

Summary

Brief introduction to Laban Movement Analysis(LMA)

Introduction to Database (Contextualize with Bayesian Approach)

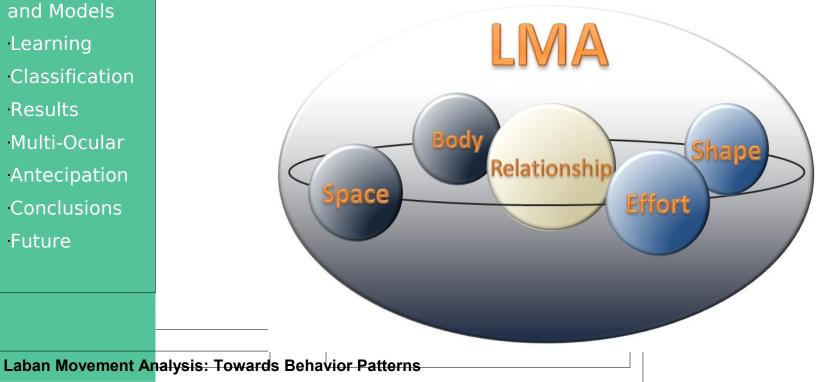
•Review of LMA principles within Bayesian framework (Jorg Rett Ph.D Thesis)

 $\cdot\,$ Components and Bayesian models.

·Results for implemented Laban Components

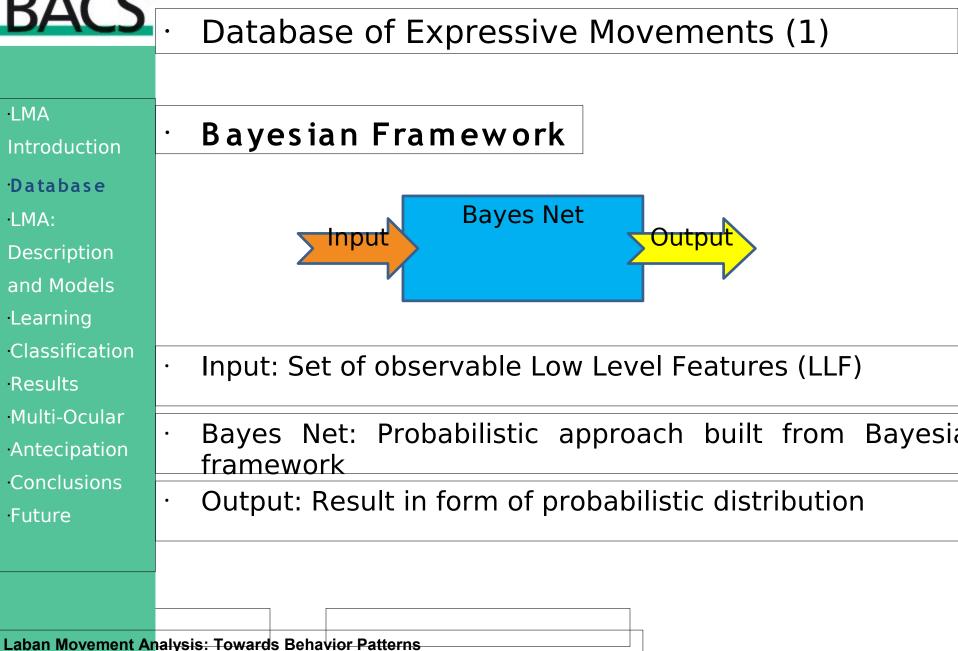
·Multi-Ocular approach for movement analysis

Antecipation and certainty, a consequence of bayesian approach.


Defining Laban Movement Analysis

·LMA

Introduction


- **Database**
- LMA:
- Description
- and Models
- Learning
- **Classification**
- Results
- Multi-Ocular
- Antecipation
- Conclusions
- Future

- Language to describe dancing movements (Rudolf Laban 1879-1958) Helps to identify useful low-level features. Defines a framework of mid-level descriptors for properties of a TRACE COGN Sonents.
- Provides intuitive way of building a Bayesian framework for classification of expressive movements.

Database of Expressive Movements (2)

LMA

Introduction

·Database

·LMA:

Description

and Models

•

Learning

Classification

Results

Multi-Ocular

Antecipation

Conclusions

Future

Existing Databases

Set I : Designed to study Space Component, 8 different movements.

Set II : Designed to study Effort Component, 4 different movements.

Feature 20 Intraction

Features are physical characteristics taken from the mapped 3-D discretized trajectories. (displacement vectors, velocity, etc)

New database

Set I: 6 Singular Movements, perfomed by 10 different people, 10 trials/movements (ongoing work)

 Set II: 6 Duals Movements (2 person interaction, in predefined standard actions), 6 different pairs of persons, 10 trials/pair. (follow-up set I)

Aprox 1200 Trials Overall

Laban Movement Analysis: Towards Behavior Patterns

•

LMA

-LMA:

Introduction

·Database

Description

and Models

Classification

Multi-Ocular

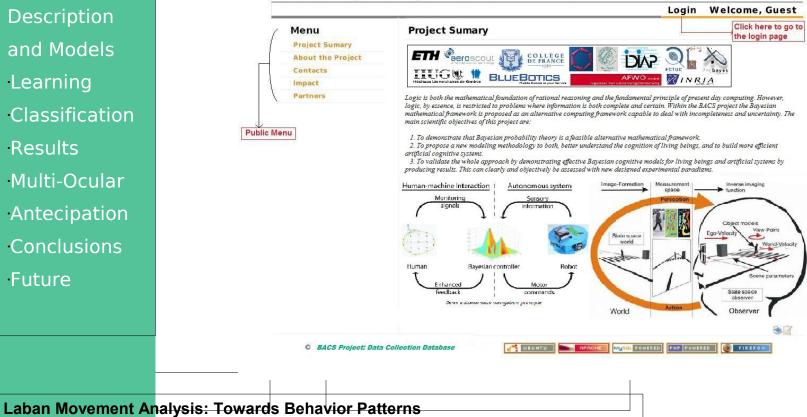
Antecipation

Conclusions

Learning

Results

Future


Database of Expressive Movements (3)

·in progress

BACS Project: Data Collection Database

Kinematic Components

LMA

Introduction

Database

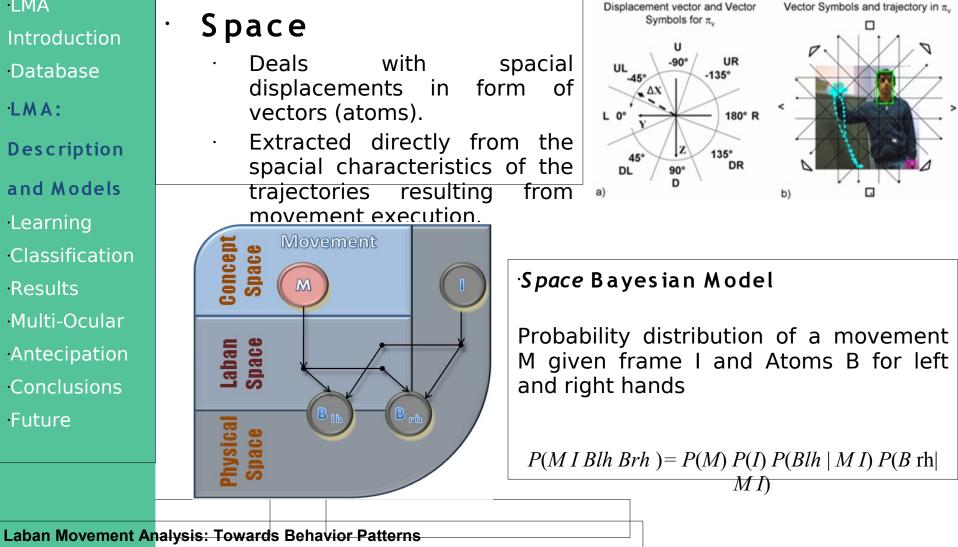
·LMA:

Description

and Models

Learning

Classification


Results

Multi-Ocular

Antecipation

Conclusions

Future

Kinematic Components

·LMA

Introduction

Database

·LMA:

Description

and Models

Learning

Classification

Results

Multi-Ocular

Antecipation

Conclusions

Future

Body

related Closely to space component; Concerns relative movement of body parts related to body center: Body Bayesian Wode parts are moving.

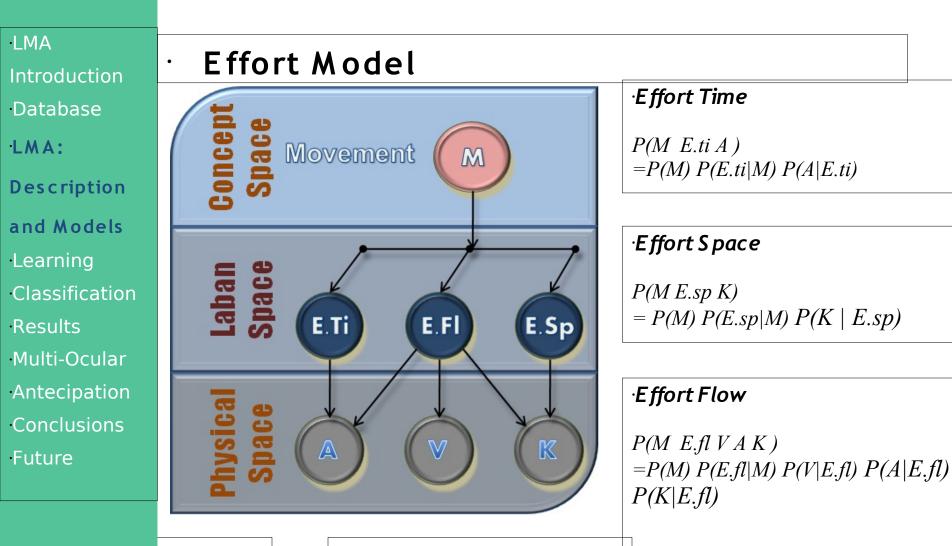
In development

Notes:

we consider the center of mass of the body to be in the sternum.

·Features: euclidean distance, body part (and maybe velocity and aceleration).

-MA Body component


Non-kinematic Components

LMA						
Introduction	· Effort					
Database	 Dynamic qualities of the movement. 					
·LMA:	 Inner attitude towards using energy Probably the decisive component when dealing with 					
Description	'expressiveness'					
and Models	· Has four qualities					
·Learning	LMA Effort Qualities Physical entities					
Classification	Time.sudden High acceleration, High velocity					
Results	Time.sustained Low acceleration, Low velocity					
-Multi-Ocular	Space.direct Small curvature, Small angular velocity					
	Space.indirect High curvature, High angular velocity					
Antecipation	Flow.free High curvature, High angular velocity					
·Conclusions	Flow.bound Low acceleration, Low velocity					
Future	Weight.strong Muscle tension, Medium acceleration					
	Weight.light Muscle relaxed					

Non-kinematic Components

Non-kinematic Components

·LMA

Introduction

Database

·LMA:

Description

and Models

Learning

Classification

Results

Multi-Ocular

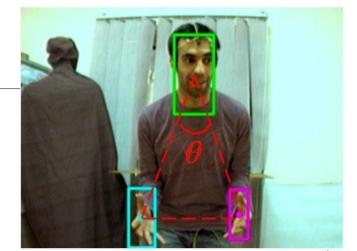
.

Antecipation

Conclusions

Future

· Shape


Emerges from Space and Body components;

Focus on: body itself, a goal towards space,

Uses descriptors like shrinking and growing, bulging and hollowing;

[.]S*hape* Bayesian Model

5 rising 1 spreading 2 enclosing 3 advancing 6 sinking 5 rising 1 spreading 5 distribution 6 distribution 7 distribut

Ongoing work

Notes:

•Consider the triangle formed from the head and hand positions •Features: Angle θ , size (perimeter) of the triangle (the angle and the perimeter will give good descriptors on whether the expressive movement is

Database

Description

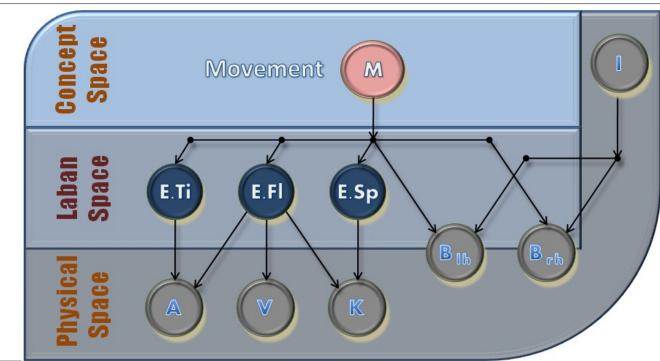
and Models

Classification

Multi-Ocular

Antecipation

Conclusions


Learning

Results

Future

·LMA:

Global Model

·Bayesian Global Model

 $P(M \ E.ti \ E.sp \ I \ Brh \ BlhVAK) = P(M) \ P(M| \ Brh) \ P(M| \ Blh) \ P(E.ti|M) \ P(E.sp|M) \ P(E.fl|M)$ $P(A|E.ti) \ P(K|E.sp) \ P(V|E.fl) \ P(A|E.fl) \ P(K|E.fl)$

٠

Learning (1)

·LMA

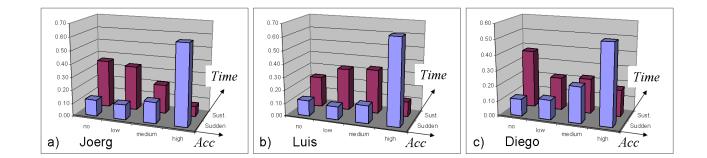
- Introduction
- Database
- ·LMA:
- Description
- and Models
- ·Learning
- Classification
- Results
- Multi-Ocular
- Antecipation
- Conclusions
- Future

Scheme based on histogram approach

·Space

P(B|MI)

•


Learning (2)

LMA

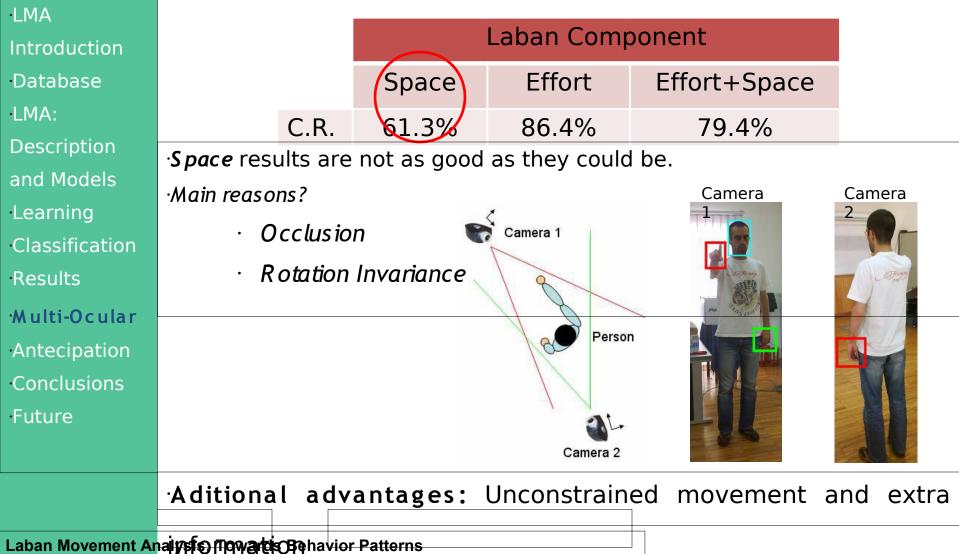
- Introduction
- Database
- ·LMA:
- Description
- and Models
- ·Learning
- Classification
- Results
- Multi-Ocular
- Antecipation
- Conclusions
- Future

Scheme based on histogram approach

·Effort

P(LLF|Effort) (e.g. P(A|E.ti))

LMA	 Questions for Classification 				
Introduction	્યાર				
Database		Question			
·LMA:					
Description	Space	P(M i b) = P(M) P(b M i)			
and Models	Effort	P(M E.ti E.sp) = P(M) P(E.ti M)P(E.sp M)			
·Learning	J oint	$P(M i \ b \ E.ti \ E.sp) = P(M) \ P(i_obs i) \ P(b M \ i) \ P(E.ti M) \ P(E.sp M)$			
Classificatio					
n	· Cont	tinuous Classification:			
Results					
Multi-Ocular	Based	d on a scheme of likelihood computation.			
Antecipation					
Conclusions	E.g. For S	Space Component: For a sequence of <i>n</i> observations of <i>a</i> .			
Future					
	1	$P(Mn+1 i1:n+1 \ bi:n+1) = P(Mn) \ P(bn+1 M \ in+1)$			


LMA Introduction	·Effort Qualities Classification Results						
Database LMA:	Effort Qualities						
Description		Space		Time		Flow	
and Models Learning		Direct	Indirect	Sudden	Sustaine d	Free	Bounde d
Classification	C.R.	79.3%	90.2%	84.8%	97.1%	61.2%	58.7%
·Results ·Multi-Ocular	·Overall Classification Results						
Antecipation	Laban Component						
Conclusions Future			Space	Effort	Effort	+Space	
		C.R.	61.3%	86.4%	79	9.4%	
	• C.R . : s	tands fo	r Classifica	tion Rate,	or the	number c	of positive
identifications. Laban Movement Analysis: Towards Behavior Patterns							

Space Component Result Analysis (1)

Overall Classification Results

·LMA

·LMA:

Introduction

·Database

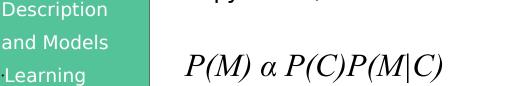
Learning

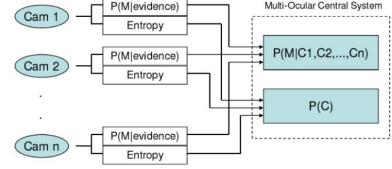
Results

Classification

·Multi-Ocular

Antecipation

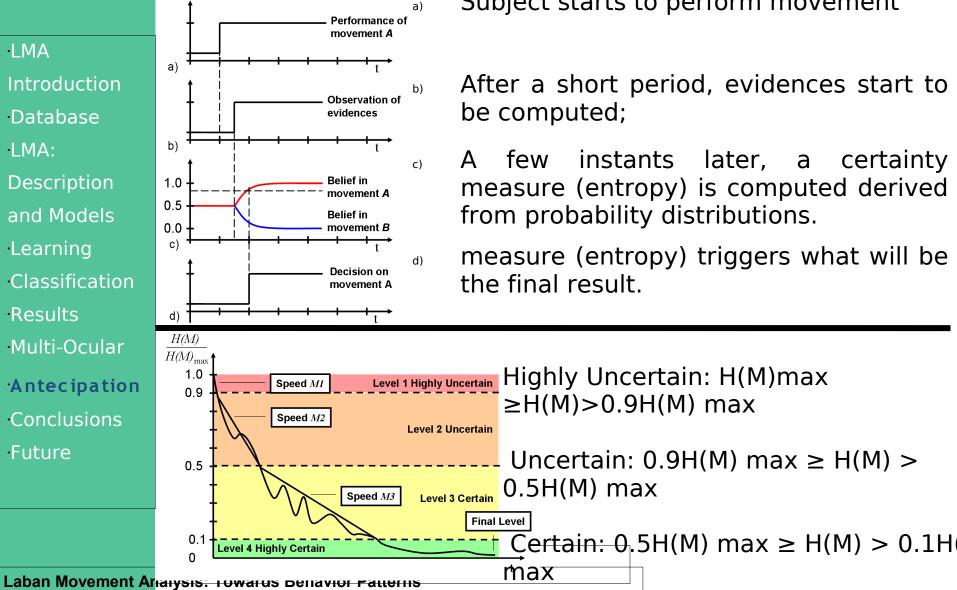



Space Component Result Analysis (2)

·Solution proposed: Multi-Ocular Model

 \cdot Each monocular system provides a probability distribution (as P(M|C)) of movement M for each camera C and entropy value;

P(C) is the confidence distribution for each camera, calculated through entropy values;



·Results: Multi-Ocular Model

Conclusions Future		Space Co	Space Component			
		Monocular	Multi-Ocular			
	C.R.	61.3%	81.0%			
Laban Movement Ar	nalysis: Towards Behavior Pa	atterns				

Antecipation and Certainty

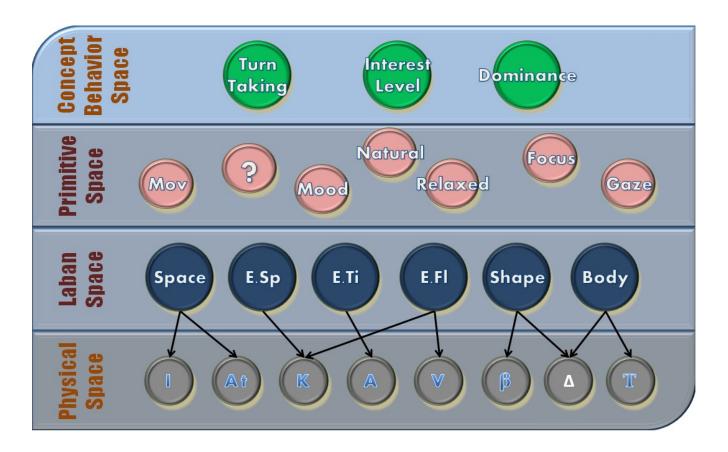
Subject starts to perform movement

After a short period, evidences start to

instants later, a certainty measure (entropy) is computed derived from probability distributions.

measure (entropy) triggers what will be

11. •


BACS · Conclusions

	There are 2 main conclusions from this year's
·LMA	development
Introduction	<u>1. Multi-Ocular improved spacial results (from 61.3%</u>
Database	classification rate to 81%)
·LMA:	2. <u>Effort improved results (from 61.3% classification rate to 86.4%.)</u>
Description	2. <u>E ffort improved results (from 61.3% classification rate to 86.4%.</u>)
and Models	 When joinning Effort and Space components
Learning	 Effort.Weight is still being investigated for visual features
·Classification	• Results for effort.flow are not as good as the other 2 components
Results	due to uncertainty inherent to its features and state.
Multi-Ocular	
Antecipation	Other facts:
Conclusions	\cdot The process of implementing <i>effort</i> was accomplished.
·Future	\cdot The Bayesian approach was used for multi-ocular model designing.
	 Having online-classification opens the possibility for anticipatory
	behaviour.
	Entropy can be used as a measure of certainty
Laban Movement Ar	alysis: Towards Behavior Patterns

Future Work: Towards Behavior Patterns (1)

- ·LMA
- Introduction
- Database
- LMA:
- Description
- and Models
- Learning
- Classification
- Results
- Multi-Ocular
- Antecipation
- Conclusions
- Future

·LMA

LMA:

Introduction

Database

Description

and Models

Classification

Multi-Ocular

Antecipation

Conclusions

Learning

Results

Future

We intent:

- · Implement remaining LMA Components (Body and Shape).
- To use LMA components to describe basic primitive behaviour.
 (e.g. Aggressive, natural, gaze, etc.)
- To use those basic primitives to describe and classify more complex behaviour within the context of Small Group Conversations.
 - \cdot Turn Taking
 - · Interest Level
 - · Dominance
- Build a database of multiple people interacting within the already reference context.

· Build Bayesian models for behaviour classification.

Laban Movement Analysis: Towards Behavior Patterns

23

Thank you for your

attention!

BACS

Publications & Deliverables

This research produced, along with the results shown, the following documents:

- •D5.17 Laban Movement Analysis using a Bayesian model and perspective projections.
- ·D5.18 Bayesian Model for Computational Laban Movement Analysis.
- ·D5.20 Computational Laban Movement Analysis using Multi-Camera Systems.
- Joerg Rett, "Robot-Human interface using Laban Movement Analysis inside a Bayesian framework.", PhD thesis.
- •Extended abstract published in conference proceedings at "14^a Conferência Portuguesa de Reconhecimento de padrões (RecPad) 2008"
- Article "Human Robot Interaction: Studies on Laban Human Movement Analysis and Dynamic Background Segmentation", submitted to IROS09 (In review).