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• A moving observer is presented with a non-static 3D 
scene containing several moving objects:

• How does the observer 

perceive his own motion 

(egomotion), the 3D 

structure of all objects in the 

scene and the 3D trajectory 

and velocity of moving 

objects (independent 

motion)?
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The Bayesian Framework The Bayesian Framework –– Uncertainty and AmbiguityUncertainty and Ambiguity

Biological uncertainties:

• physical constraints on sensors

• discretisation (analogue-to-
spike train)

• neural noise (firing apparently 
not due to stimuli)

• structural constraints on neural 
representations and 
computations

Artificial uncertainties:

• sensor accuracy and precision

• discretisation (analogue-to-
digital)

• noise not accounted by 
artificial perception models

• round-off effects and data 
representation limitations

Ambiguities:

The Bayesian Framework The Bayesian Framework –– JustificationJustification

• Recently, several hypothesis regarding biological perception 

have surfaced [1]:

1. Perception as a process of unconscious, probabilistic inference →
deals with perceptual uncertainty, ambiguity and conflicts.

2. The brain coding uncertainty in its internal representations and 
computations (e.g., population codes).

3. Perceptual brain is not feedforward → complex network of 
connections, although some modularity is preserved.
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The Bayesian Framework The Bayesian Framework –– Biological and Biological and 

Artificial PerceptionArtificial Perception
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GoalsGoals

• We mainly expect to contribute in developing computational 

models which:

• are based on the perceptual modalities of 

vision, audition and vestibular 

sensing;

• perform perceptual fusion within a 

Bayesian framework;

• do not involve processes such as scene 

interpretation and classification as in the 

perceptual brain’s dorsal pathway(s);

• will serve as a framework for 

implementing short-term egocentric 

spatial memory for active perception.
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IMPEP 1 (Integrated Multimodal Perception Experimental Platform)IMPEP 1 (Integrated Multimodal Perception Experimental Platform)

Platform descriptionPlatform description
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{ I } Inertial frame

{ L } Laser frame

{ PT }    PanTilt frame 

{ Cm } Camera (mono setup)

{ Cr }, { Cl } Cameras (stereo setup)

{ Mr }, { Ml } Binaural microphones

{ E } Egocentric frame

• IMPEP 1 consists of a stereovision, binaural and inertial measuring unit 

(IMU) setup mounted on a motorised head, with gaze control capabilities for 

image stabilisation and perceptual attention purposes. . 

IMPEP 2 (Integrated Multimodal Perception Experimental Platform)IMPEP 2 (Integrated Multimodal Perception Experimental Platform)

New PlatformNew Platform

• The IMPEP (v2.0) active perception head adds 

vergencevergence capabilities to the stereovision system 

besides improved motor control and improved motor control and 

conditioning. conditioning. 

• The design of the new robotic vision head (IMPEP2) is from our colleagues at FCT-UC working on the 

European project POP - Perception On Purpose - FP6-IST-2004-027268. [http://perception.inrialpes.fr/POP/]
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Egocentric Spatial Maps Egocentric Spatial Maps –– The Dorsal PathwayThe Dorsal Pathway

Egocentric Directional CodingEgocentric Directional Coding

� Importance of egocentric directionalegocentric directional angles for action, namely 

the issuing of motor commands for manipulation and head 

turns for gaze control:

egocentric directionegocentric direction

φ

θ

φφ -- elevationelevationθθ -- azimuthazimuth

Egocentric Spatial Maps Egocentric Spatial Maps –– The Dorsal PathwayThe Dorsal Pathway

JJust ust NNoticeable oticeable DDifference (JND) and the Logarithmic Scaleifference (JND) and the Logarithmic Scale

• Weber’s Law of JND: minimum amount by which a stimulus 

parameter must be changed in order to produce a noticeable 

variation in sensory experience [2].

• Example: binocular disparities

0 Ndisparity
Discrete

sampling, 

as with 

pixelised 

images
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• Weber’s Law of JND: minimum amount by which a stimulus 

parameter must be changed in order to produce a noticeable 

variation in sensory experience [2].

• Example: binocular disparities

0 Ndisparity (d)

∞Depth ≡ ρabs(d) ≈ ρMin + bρlogb ρMin + logb ρ

Egocentric Spatial Maps Egocentric Spatial Maps –– The Dorsal PathwayThe Dorsal Pathway

JJust ust NNoticeable oticeable DDifference (JND) and the Logarithmic Scaleifference (JND) and the Logarithmic Scale

BVM BVM -- Bayesian Volumetric Map Bayesian Volumetric Map BVM BVM -- Bayesian Volumetric Map Bayesian Volumetric Map 
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BVM BVM -- Bayesian Volumetric Map Bayesian Volumetric Map 

• An egocentric, log-spherical spatial memory map has been devised (in collaboration 

with INRIA Rhône-Alpes, CNRS-Grenoble and Probayes) as a framework for 

multimodal sensor fusion, named the Bayesian Volumetric Map (BVM).

• This map stores the independent probabilistic states for each cell C in a volumetric 

grid with log-spherical configuration, defined by the domain:

≡ ] logbρMin ; logbρMax ] × ]θMin ; θMax ] × ]φMin ; φMax ]

BVM BVM -- Bayesian Volumetric Map Bayesian Volumetric Map BVM BVM -- Bayesian Volumetric Map Bayesian Volumetric Map 

�� IMPEP 1IMPEP 1�� IMPEP 2IMPEP 2
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• The IMPEP 2 system will be mounted on a SEGWAY RMP mobile platform at the Mobile Robotics Laboratory, ISR/FCT-UC, 

supported by the BACS European Project (EC-contract number FP6-IST-027140, Action line: Cognitive Systems).
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BVM BVM -- Bayesian Volumetric Map Bayesian Volumetric Map 

φ

θ

log ρ

φ

θ

log ρ

BVM BVM -- Bayesian Volumetric Map Bayesian Volumetric Map 

• Visual and auditory 

observations may be fused and 

registered using an occupancy 

map built upon the log-spherical 

volumetric configuration:
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BVM BVM -- Bayesian Volumetric Map Bayesian Volumetric Map 

• Denoting “cell antecedent” AC as the cell where the object that occupies cell C

was probably positioned in the previous estimation step, and assuming a high 

probability constant velocity model, a prediction step can be added.

• A Bayesian Occupancy Filter

can then be used as on [3, 4] 

(Tay et al., Coué et al.), for both 

occupancy OC and local motion 

VC.

• Promotion of observations into 

integration is achieved by 

estimating egomotion using 

the inertial sensors as with 

the human vestibular system [5] 

(Laurens and Droulez).

[ θ , φ ]
motor    

Sensors and InterfacesSensors and Interfaces Active Head MotorsActive Head Motors

IMPEP/BVM Framework OverviewIMPEP/BVM Framework Overview
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Vision Sensor DescriptionVision Sensor Description

• The IMPEP stereovision system gives a probabilistic depth map referred to the 

cyclopean view (i.e. the egocentric coordinate system).

• This depth map is stored in a neuronal population code-like data structure, such as 

the one depicted above.

• Each virtual photoreceptor on the cyclopean view is related to a probability distribution 

that is used as the so-called elementary sensor model Pk(Z), which gives the 

probability of a given depth measurement when only cell [C = k] is known to be 

occupied by a reflecting surface in the sensor’s line-of-sight.

� Slide with animation showing relations between the cyclopean view, the elementary sensor 

model and the population code-like data structure.

Egocentric Depth Mapping Using StereovisionEgocentric Depth Mapping Using Stereovision

(X, Y, Z)

(xl, xr) => (ul, ur) in pixels

δ = ul - ur

• The IMPEP stereovision system yields a disparity map with associated confidence 

values λ, which can then be referred to the cyclopean view (i.e. the egocentric 

coordinate system):

{ CCCCl l l l }

X

Y

Z
{ CCCCrrrr }

b

{EEEE }

xr

xl

f

(i, k)
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Egocentric Depth Mapping Using StereovisionEgocentric Depth Mapping Using Stereovision

(ρi,k, θi,k, φi,k)

{ CCCCl l l l }

X

Y

Z
{ CCCCrrrr }

b

{EEEE }

xr

xl

f

(i, k)

For each pixel (i, k) on the cyclopean image 

corresponding to (θi,k, φi,k) in spherical coordinates,

a disparity estimate δ yields a depth estimate ρ^ ^

• The IMPEP stereovision system yields a disparity map with associated confidence 

values λ, which can then be referred to the cyclopean view (i.e. the egocentric 

coordinate system):

Egocentric Depth Mapping Using StereovisionEgocentric Depth Mapping Using Stereovision

• The resulting depth map is stored in a neuronal population code-like data 

structure, analogous to the one depicted below:

• Each virtual photoreceptor on the cyclopean view is related to a probability distribution 

that is used as the so-called elementary sensor model Pk(Z).



12

Soft Evidence: Elementary Sensor Model Soft Evidence: Elementary Sensor Model 

• The (Gaussian) elementary sensor model 

Pk(Z), which yields the probability of a given 

depth measurement Z = log ρ when only cell   

[C = k] in the sensor’s line-of-sight is known to 

be occupied by a reflecting surface, is given by:

where µ(•) and σ(•) are the operators that perform the required spatial coordinate 

transformations, and                is assumed to be the log-space index of the only 

occupied cell in the line-of-sight, taken from  the depth estimate.

Stereovision Calibration:Stereovision Calibration:

Estimating Elementary Sensor Model ParametersEstimating Elementary Sensor Model Parameters

• The elementary sensor model depends of two sets of intrinsic parameters:

• The intrinsic parameters of both cameras, which are used to compute (1).

• σmin, the smallest error in depth yielded by the stereovision system, used to compute (2).

(1)

(2)

• These can be estimated using standard camera calibration techniques.
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Vision Sensor Model (Adapted from Yguel et al. [6])Vision Sensor Model (Adapted from Yguel et al. [6])

– Cell Identifier (logb
ρ
max, θmax, φmax)

– Measurement taken by the vision sensor (1D range-sensing photoreceptor)

– Occupancy of cell C (0 = unnocupied; 1 = occupied by reflective surface) - -

C

CO

Z

Vision Sensor Model Vision Sensor Model –– Simulation ResultsSimulation Results

Simulation for [C = 14] (total of 40 cells), considering both occupied and unoccupied states. 

Note that the results reflect the assumption that when [OC = 1] cells farther from the origin than 

[C = 14] are occluded, and hence do not yield visual readings.
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Inference Using Vision Sensor Model Inference Using Vision Sensor Model –– Simulation ResultsSimulation Results

Simulation results with number of cells N = 40, and ρMin = 1000mm and ρMax = 11000mm. 

The full red trace corresponds to the result of inference and the full blue trace corresponds to 

the Gaussian elementary sensor model. Note the effects of the logarithmic partitioning of 

depth and of the soft evidence conveyed by the elementary sensor model.

Inference Using Vision Sensor Model Inference Using Vision Sensor Model –– ResultsResults

• Occupancy-only (i.e. no prediction/dynamics) results, showing 22-frame movies of BVM (left)

corresponding to each of the left-camera images (right), taken at consecutive instants in time.

• Depicted cells have occupancy probabilities higher than 60%, varying from transparent to 

opaque with increasing P ( [ OC = 1 ] | Z C ).
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3D Localisation using Binaural Cues3D Localisation using Binaural Cues

Each ear receives a different 

version of the arriving sound

• Differences in timetime: : 

Interaural Time Difference (ITD)Interaural Time Difference (ITD)

• Differences in levellevel::

Interaural Level Difference (ILD)Interaural Level Difference (ILD)

Binaural CuesBinaural Cues

•• ITDs:ITDs:

• vary systematically with the angle of incidence of the sound wave relative to the interaural 

axis;

• are virtually independent of frequency, representing the most important localization cue for 

low frequency signals (<1500Hz in humans).

• The ears’ spatial disparity and 

the mass between them

•• ILDsILDs vary much more with frequency. Low frequency sounds easily travel around the head and 

produce negligible ILDs.

X

Y

Interaural Axis

3D Localisation using Binaural Cues3D Localisation using Binaural Cues

•• upup--down confusiondown confusion

Binaural Isosurfaces Binaural Isosurfaces –– Symmetry EffectsSymmetry Effects

• For distances > 2m, iso-ITD/ILD surfaces form hollow cones of confusion with a specific 

thickness extending from each ear in a symmetrical configuration relatively to the medial plane: 

X

Z

Y

< ITD or ILD

> ITD or ILD

Interaural Axis

upup--down confusiondown confusion

frontfront--back  confusionback  confusion

• In this case, only azimuth (θ) can be estimated, thus monaural cues are needed to fully 

localise a sound source in 3D.

•• frontfront--back confusionback confusion



16

• However, for sound sources within 1 − 2 meters of the listener, iso-ILD surfaces delimit hollow spherical 

volumes with different shapes for each frequency, symmetrically placed about the medial plane and 

centred on a point on the interaural axis [8]. 

• Thus, for sources within 2 meters range, the intersection of the ILD and ITD volumes is a torus-shaped 

volume [8].

3D Localisation using Binaural Cues3D Localisation using Binaural Cues

Binaural Isosurfaces Binaural Isosurfaces –– Proximity Effect on ILDsProximity Effect on ILDs

1m 2m

Binaural  Binaural  

cue cue 

informationinformation

+

+

Distance ρ

Elevation φ

Azimuth θ Azimuth θ only

Z

• If the source is more than 2 meters away, the change in ILD with source position is too gradual to provide 

spatial information (at least for an acoustically transparent head), and the source can only be localised to 

a volume around the correct cone of confusion [8].

• In this case, binaural cues alone can be used to fully localise the source in 3D space (i.e. azimuth θ, 

elevation φ and distance ρ). 

Binaural Sensor DescriptionBinaural Sensor Description

• The binaural system grabs a stereophonic signal and analyses it by applying a model 

of the monaural processing performed by the middle ear and cochlea [9, 10, 11] 

followed by binaural processing (Faller and Merimaa [7]) of the resulting signals so as 

to derive binaural cues related to each frequency channel.

• This results on binaural cue measurement vectors of the form                                     , 

where τ is the frequency-independent ITD, and ∆L are the ILDs.
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Audition/Binaural Sensor Model Audition/Binaural Sensor Model 

Cell occupied by a sound source

→→→→→→→→ SSCC = 1= 1

φ

θ

log ρ

Cell occupied

→→→→→→→→ OOCC = 1= 1

… meaning that SScc is a special case of OOCC

– Cell Identifier (log b
ρ

max, θmax, φmax)

– Measurement taken by the audio sensor (generic notation)

– Occupancy of cell C

– frequency invariant interaural time differences ( ITD s) - ms 

– frequency dependent interaural level differences ( ILD s) - dB

C

C
O

τ
( )k

C
fL∆

ZP(SC|OCC) [OC=0] [OC=1]

[SC=0] 1 0.5

[SC=1] 0 0.5

Σ 1 1

Audition/Binaural Sensor Model Audition/Binaural Sensor Model 

– Cell Identifier (logb
ρ

max, θmax, φmax)

– Measurement taken by the audio sensor (generic notation)

– Occupancy of cell C

– frequency invariant interaural time differences (ITDs) - ms 

– frequency dependent interaural level differences (ILDs) - dB

C

CO

τ
( )k

CfL∆

Z

� Slide with animation showing the difference between an occupied cell and cell occupied by a 

sound-source (i.e., the latter is a special case of the former).
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• The auditory calibration’s purpose is to characterise the normal distributions of 

the Direct Auditory Sensor Model (DASM)Direct Auditory Sensor Model (DASM), defined as:

• This will allow the full localisation of sound-sources in three-dimensional space:

• Azimuth ( θ )

• Elevation ( φ )

• Distance ( ρ )

Binaural System Calibration        Binaural System Calibration        

( ) ( ) ( ) ( )( )∑ ∏
=

∆=
CS

m

k

CC

k

cCCCCC COSfLPOSPCOSPCOZP
1

max   |  | || τθτ

Binaural System Calibration: Experimental PlanBinaural System Calibration: Experimental Plan

• To cover the complete auditory sensor space, the sound-source must be positioned at each grid cell on the BVM

• Methodology: sound-source is positioned at a specific distance ( ρρρρ ) from the IMPEP head, directly facing the front 

of the Pan & Tilt Unit (PTU), and the corresponding relative rotation is performed by the PTU; 

• The different distances ( ρ ) between the sound-source and the IMPEP head are obtained manually.

• To avoid redundancies and to simplify the procedure ⇒ only one quadrant is used capitalising on:

• Symmetry from front-back confusion phenomenon

• Left-Right anti-symmetry (ITD = - ITD and ILD = - ILD)

• Goal: to capture binaural readings using the stereo microphones of the 

IMPEP Active Perception Head for each cell in the auditory sensor space of a 

broadband noise sound-source (1s) – similarly to standard Head-Related 

Transfer Function (HRTF) measurements.

φ

Tilt

θ
Pan Pan

� Replace the following static slides with animations concerning the auditory calibration 

procedure.
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Experimental plan (example)Experimental plan (example)

Resolution ( Pan / Tilt ):

• 2 degree of azimuth ( θ ) – performed by the Pan motor   – 360º / 2º   = 180 cells ( 360º / 2º   = 180 cells ( θθθθθθθθ ))

• 10 degrees of elevation ( φ ) – performed by the Tilt motor   – 180º / 10º  = 18 cells ( 180º / 10º  = 18 cells ( φφφφφφφφ ))

• Acquisition for Nd = 2 different distances   ⇒ d : d1 ~ 0.32m ; d2 ~  3.2 m  =  2 cells ( =  2 cells ( ρ ρ ρ ρ ρ ρ ρ ρ ))

φ

Tilt

θ
Pan Pan

ExperimentalExperimental plan (example contd.)plan (example contd.)

To avoid redundancies ⇒ only one quadrant is used

Because:

• Symmetry from front-back confusion phenomenon

• Left-Right anti-symmetry (ITD = - ITD e ILD = - ILD)

Auditory sensor space angular ranges simplify to (including PTU spec limitations for elevation):

Azimuth ( Azimuth ( θθθθθθθθ ) :     ) :     90º / 2º 90º / 2º == 45 cells 45 cells 

Elevation ( Elevation ( φφφφφφφφ )) :   :   ( ( -- 30º to 30º ) / 10º   =30º to 30º ) / 10º   = 6 cells6 cells

Consequently:

• [ Nd × (  45   × 6  ) ] × Nm = 2 × 270 × Nm =  540 × Nm sets of measurements

• (Nm measurements = 20 stimulus) in each place to perform a statistical description

Becoming:

• 540 × 20 = 10800

• if each measurement takes 1s plus 1s of pause ( play / record ), calibration for each distance (i.e. the calibration 

process is conveniently divided into Nd sessions) will take: 10800 × 2s / 2  =  3 h3 h

Azimuth 
meas.

Elevation 
meas.

� Nd – number of distances

� Nm – numbers of measurements in each cell
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• Measurement sets definitions (after applying processing binaural readings):

( ) ( ){ }

( ) ( ){ } mN
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M
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fLfL
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...                               

   , ... ,    ,    
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∆∆
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τ

τ

M × ILD
IT D

CC MMM   ∪=

Measurements for all cells

Measurements 
for all other cells 

except C

Measurements 
for cell C

Measurements for cell CCM

Binaural System CalibrationBinaural System Calibration

• Calibration is done in as with commonly used head-related transfer function (HRTF) 

calibration processes (see, for example, [11]), where the HRTF parameters are estimated 

by collecting binaural measurements through the positioning of a sound-source so as to 

uniformly sample sensor space.

• Normal probability distribution statistical characterisation process:
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Binaural System CalibrationBinaural System Calibration
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Binaural System Calibration ProcessBinaural System Calibration Process

X

Z

Y

ρρρρ

d1

× Nd

dNd

Distance calibration: for each (θ, φ), sound-source is positioned at Nd distances 
along Z axis at (θ = 0, φ = 0)

N N ××1s Broad band white1s Broad band white--noisenoise

N N ××1s Broad band white1s Broad band white--noisenoise

( θ = 0, φ = 0 )  

{EEEE }

Binaural System Calibration ProcessBinaural System Calibration Process

X

Z

Y

ρρρρ( θ0, φ = 0)  

Rotating Sound-Source ⇔⇔⇔⇔ Rotating Binaural System

{EEEE }
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X1

Z1

Y

X0

Z 0θ1

(θ1, φ = 0 )  

Binaural System Calibration ProcessBinaural System Calibration Process

ρρρρ

Rotating Sound-Source ⇔⇔⇔⇔ Rotating Binaural System

{EEEE }

X1

Z1

Y

ρρρρ

General Schematic:

θ

φ

ρρρρ

Binaural System Calibration ProcessBinaural System Calibration Process

x

y

z{ MMMMrrrr }

{ MMMMllll }

x

y

z

Azimuth  ⇒ θ = [ 0 , ∆θ , ... , (Nθ-1) ∆θ ]

Elevation ⇒ φ = [ - (Nφ-1) ∆φ/2 , … , (Nφ-1) ∆φ/2 ]           

{EEEE }

CC MMM   ∪=

Measurements for all cells

Measurements 
for all other cells 

except C

Measurements 
for each cell C
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IASM IASM -- Inverse Auditory Sensor Model Inverse Auditory Sensor Model 

DASMDASM

IASM IASM -- Inverse Auditory Sensor Model Inverse Auditory Sensor Model 

Inference Using Audition Sensor Model Inference Using Audition Sensor Model –– ResultsResults

Results of Bayesian inference on the occupancy state of the BVM after processing an audio 

snippet of a human speaker placed in front of the binaural perception system — only BVM 

cells with probability of being occupied over .75 are represented. On the left, inference on the 

direct auditory sensor model using ITDs only; on the right, result of adding

ILDs to the model. Note the effects of the front-to-back confusion, and of ILD dependence on 

distance and elevation, further improving inference precision.
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Inference Using Audition Sensor Model Inference Using Audition Sensor Model –– ResultsResults

Occupancy results for the processing of an audio snippet of a sound-source placed at ρ = 

1320 mm, θ = 36º, φ = 20º. Two dashed directional lines at (θ, φ) and (180º - θ, φ) have been 

additionally plotted to demonstrate the effect of front-to-back confusion. The fact that θ >> 0º 

means that precision in elevation and distance is improved as compared to the previous 

results.

Inference Using BVM Inference Using BVM –– ResultsResults

Ongoing Work…
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Using the BVM Framework for EntropyUsing the BVM Framework for Entropy--Based Active Exploration         Based Active Exploration         

Using the BVM Framework for EntropyUsing the BVM Framework for Entropy--Based Active Exploration         Based Active Exploration         

≈
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BVM for EntropyBVM for Entropy--Based Active Exploration Based Active Exploration –– Discussion      Discussion      

• Entropy-based exploration using a framework such as 

the BVM has biological support – e.g. most animals do 

not look at a scene in a steady way; it is believed that the 

eyes move in saccades so that small parts of a scene 

which have not been unambiguously resolved can be 

sensed with greater resolution, building up a mental 

“map” corresponding to the scene [1].

• Entropy-based exploration has been shown on previous 

work [13, 14] to be an efficient strategy for perception.

• The solution presented in this work, taking advantage of 

the log-spherical configuration provided by the BVM, 

allows for a much faster search algorithm for gaze 

orientation than the Cartesian solutions presented on 

[13, 14], thus improving on this concept.

• Moreover, the multimodal sensor fusion framework of the 

BVM allows for a robust perceptual solution.

≈

• We have developed a Bayesian solution for 

multimodal perception implementing visual, auditory 

and vestibular/inertial sensory fusion.

• This solution will serve as a framework for 

implementing short-term egocentric spatial memory 

for entropy-based active multimodal perception and 

to support the modelling of other perceptual 

behaviours.

• An experimental platform has been built so as to 

provide a test bed for this framework.
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