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Summary. Biological-plausible attention mechanisms are general approaches that permit a
social robot to extract only relevant information from the huge amount of input data. In this
paper an attention mechanism based on the feature integration theory is proposed. The aim of
this attention mechanism is to provide to higher-level modules of the vision system the most
relevant regions in fast, dynamic scenarios where interaction with humans can occur. The
proposed system integrates bottom-up (data-driven) and top-down (model-driven) processing.
The bottom-up component determines and selects salient image regions by computing a num-
ber of different features. The top-down component makes use of object templates to filter out
data and track significant objects. The proposed system has three steps: parallel computation
of feature maps, feature integration and simultaneous tracking of the most salient regions. Its
main characteristic is that the mechanism integrates the tracking of the most salient regions,
which allows to handle changing environments with moving objects where occlusions can oc-
cur.
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1 Introduction

One of the aims of the emerging field of Human-Robot Interaction (HRI) is the de-
velopment of social robots. A social robot can be defined as “an embodied agent that
is part of a heterogeneous society of robots and humans” [3]. In order to unfold its
abilities in this human-based scenario, the social robot must be capable of commu-
nicate and interact with humans and other social robots. This interaction implies that
the social robot must simultaneously perceive a great variety of natural social cues
from visual and auditory channels, and to deliver social signals. This social behaviour
can be evaluated in a more easy way if it is imposed that a socially interactive robot
senses and interprets the same phenomena that humans observe (“human-oriented
perception”) [2]. Besides, social robots must proficiently interpret human activity
and behaviour.
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If most human-oriented perception is based on passive sensing (artificial vision
and auditory), the vision system is the responsible of solve the problems of identi-
fying faces, measuring head and hands poses, capturing human motion, recognizing
gestures and reading facial expressions to emulate human social perception. This in-
formation permit that the robot be able to identify who the human is, what the human
is doing, how the human is doing it and even to imitate the human motion. Thus, the
robot could treat the human as an individual, understand his/her surface behaviour,
and potentially infer something about his/her internal states (e.g., the intent or the
emotive state). On the other hand, these human-related tasks must be run in parallel
with object-related ones, which permit the robot to recognize objects extracted from
the environment. In order to achieve these goals, the visual perception system of the
social robot can imitate the ability of natural vision systems to select the most salient
information from the broad visual input. The use of attention to reduce the amount of
input data has two main advantages: i) the computational load of the whole system
is reduced, and ii) distracting information is suppressed. An attention mechanism is
central to a system requiring a selection of the relevant information on which the
system activities are based.

The goal of this paper is to develop a general purpose attention mechanism based
on the feature integration theory, which is capable of handling dynamic environ-
ments, and detecting human faces or hands in a fast way. The proposed system
integrates bottom-up (data-driven) and top-down (model-driven) processing. The
bottom-up component determines and selects salient image regions by computing
a number of different features. The top-down component makes use of object tem-
plates to filter out data and only track significant objects. The rest of the paper is
organized as follows: Section II presents a general overview of the method. Section
III is a description of the computation of early features and its integration. Salient
regions selection and tracking algorithm are presented in Section IV. Section V deals
with some obtained experimental results. Finally, conclusions and future works are
presented in Section VI.

2 Overview of the proposed system

One of the most influential theoretical models of visual attention is the spotlight
metaphor [4], by which many concrete computational models have been inspired
[9, 6]. These approaches are related with the feature integration theory [12]. Thus,
they are organized into two main stages. First, in a preattentive task-independent
stage, a number of parallel channels compute image features. The extracted features
are integrated into a single saliency map which codes the saliency of each image
region. The most salient regions are selected from this map. Second, in an attentive
task-dependent stage, the spotlight is moved to each salient region to analyze it in
a sequential process. Analyzed regions are included in an inhibition map to avoid
movement of the spotlight to an already visited region. Thus, while the second stage
must be redefined for different systems, the preattentive stage is general for any ap-
plication.
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Although these models have good performance in static environments, they can-
not in principle handle dynamic environments due to their impossibility to take into
account the motion and the occlusions of the objects in the scene. In order to solve
this problem, an attention control mechanism must integrate depth and motion in-
formation to be able to track moving objects [1]. Thus, Maki et al. [7] propose an
attention mechanism which incorporates depth and motion as features for the com-
putation of saliency. Baker and Mertsching [1] also compute depth as a feature, but
use dynamic neural fields to track the most salient regions of the saliency map in
a semiattentive stage. The method is reported to take 30 seconds per frame, which
makes its application to real-time, interactive systems unfeasible.

Fig. 1.a shows the overview of the proposed architecture. The presented work is
centered in the task-independent stage of a feature integration approach. Our method
is related to the recent proposal of Backer and Mertsching [1] in several aspects.
The first is the use of a preattentive stage in which parallel features are computed
and integrated into a saliency map. However, in contrast with this and other attention
systems, we have introduced the skin colour as input feature in order to detect human
faces or hands as possible regions of interest. Thus, in this work, skin colour is first
detected using a chrominance distribution model [11] and then integrated as input
feature in a saliency map. Other similarity is that this preattentive stage is followed
by a semiattentive stage where a tracking process is performed. But, while Backer
and Mertsching’s approach performs the tracking over the saliency map by using
dynamics neural fields, our method tracks the most salient regions over the input
image with a hierarchical approach based on the Bounded Irregular Pyramid [8].
The output regions of the tracking algorithm are used to implement the inhibition of
return and avoid revisit or ignore objects. The main disadvantage of using dynamic
neural fields for controlling behavior is the high computational cost for simulating
the field dynamics by numerical methods. The Bounded Irregular Pyramid approach
allows real time tracking of a non-rigid object without a previous learning of different
objects views [8]. In this work, the tracking approach has been modified to work
simultaneously with several regions without a high increment of the computational
cost.

3 Computation of early features

The proposed method uses a number of features computed from the available input
image in order to determine how interesting a region is in relation to others. These
features are independent of the task and they allow to extract the most interesting
regions of the image. Besides, they permit to distinguish locations where a human be
placed. Particularly, chosen features are colour and intensity contrast, disparity and
skin colour. Attractivity maps are computed from these features, containing high val-
ues for interesting regions and lower values for other regions in a range of [0...255].
Thus, the integration of these feature maps into a single saliency map allows to de-
termine what regions of the input image are the most interesting. It must be noted
that although other features like the multiscale opponent color or orientation repre-
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Fig. 1. a) Overview of the proposed attention mechanism and b) overview of the tracking
algorithm

sentations can be easily added without changes in the following steps, they have not
been finally employed because they do not improve the results significantly.

3.1 Feature: colour contrast

Colour is employed for all attentional models because it can distinguish important as-
pects of the objects. The first step to compute colour contrast is to choose an adequate
colour space. We have selected the HSV colour space due to its intuitive represen-
tation and the facility to separate the chrominance from the luminance information.
Thus, the RGB colour information is firstly transformed into the HSV colour space.
Second, the input image is segmented using a Bounded Irregular Pyramid (BIP) [8]
in order to obtain homogeneous colour regions. And finally, in contrast with other
methods which only compute the colour contrast for a set of colours [1], the pro-
posed algorithm computes a colour contrast value for each homogeneous colour re-
gion of the input image independently of its colour. The colour contrast of a region i
is calculated as the mean colour gradient MCGi along its boundary to the neighbour
regions:

MCGi =
Si

PLi
∑
j∈Ni

pli j ∗ d(< Ci >,< Cj >) (1)

being PLi the length of the perimeter of the region i, Ni the set of regions which are
neighbours of i, pli j the length of the perimeter of the region i in contact with the
region j, d(< Ci >,< Cj >) the Euclidean distance between the colour mean values
< C > of the regions i and j and Si the mean saturation value of the region i.
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3.2 Feature: intensity contrast

This feature map is computed in a similar way to the previous one. The intensity
contrast of a region i is the mean intensity gradient MIGi along its boundary to the
neighbour regions:

MIGi =
1

PLi
∑
j∈Ni

pli j ∗ d(< Ii >,< I j >) (2)

being < Ii > the mean intensity value of the region i.

3.3 Feature: skin colour

Skin colour is an important tool to distinguish locations in which a human is proba-
bly located. In order to segment skin colour regions from the input image, it is neces-
sary to compute an accurate skin chrominance model using a colour space. The skin
chrominance model used in the proposed work has been built over the TSL colour
space and it is based on the method proposed by Terrillon and Akamatsu [11]. Once
the chrominance model has been established, the steps to segment skin regions from
an image are the following: first, the RGB input image is transformed into a TSL
image. Second, the Mahalanobis distance from each pixel (i, j) to the mean vector is
computed. If this distance is less than Ts then the pixel (i, j) of the skin feature map
is set to 255. In any other case, it is set to 0.

3.4 Feature: disparity

In our system, relative depth information is obtained from a dense disparity map
which is scaled in the range [0 ... 255], being 255 the disparity value of the closest
region. Thus, closed regions are considered more important. As disparity estimator
we employ the zero-mean normalized cross-correlation measure. It is implemented
using the box filtering technique. This allows to achieve fast computation speed [10].

3.5 Feature integration

Similarly to other models [6][1], the saliency map is computed by combining the
feature maps into a single representation. In our case, all the feature maps are nor-
malized to the same dynamic range, in order to eliminate cross-modality amplitude
differences due to dissimilar feature extraction mechanisms. A simple normalized
summation has been used as feature combination strategy because, although this is
the worst strategy when there are a big number of feature maps [5], it has been
demonstrated that its performance is good in systems with a small number of fea-
ture maps. Other approaches, like the content-based global non-linear amplification
proposed by Itti and Koch [5], have been tested. The obtained results have not been
significantly improved.
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4 Selection and tracking of salient regions

Once the saliency map is calculated, it is segmented in order to obtain regions with
homogeneous saliency. Among the set of obtained regions, only big enough regions
with a high saliency value are taken into account. In our experiments, a region has
been considered as a salient one if its size is greater than the 0.2% of the input image
size and its saliency is greater than the 60% of the saliency map maximum value.
These threshold has been empirically obtained and works correctly in most cases.

In a dynamic environment, when the most salient regions of the scene are se-
lected, it is necessary to track these regions in successive frames in order to imple-
ment correctly the inhibition of return and avoid revisiting or ignoring objects during
the attentive stage [1]. The tracking algorithm is based on the Bounded Irregular
Pyramid (BIP) [8]. A first version of this algorithm that tracks only one region has
been explained in [8]. This approach has been modified to work simultaneously with
several regions without a high increment of the computational cost. Thus, it permits
to track non-rigid objects without a previous learning of different object views in real
time. To do that, the method uses weighted templates which follow up the viewpoint
and appearance changes of the objects to track. The templates and the targets are
represented using BIPs.

The most salient regions obtained by segmentation of the saliency map are di-
rectly related to homogeneous colour regions of the segmented left input image.
These homogeneous colour regions are the targets to track. It must be noted that
targets are not necessary associated with homogeneous saliency regions, but with
homogeneous colour ones. This mechanism provides better object candidates to the
tracking stage. Once the targets are chosen, the algorithm extracts its hierarchical

representations. Each hierarchical structure is the first template M (0)
r and its spatial

position is the first region of interest ROI (0)
r , where r ∈ [1...N] and N is the number

of salient regions to track.
Although in the following steps the general implementation of the tracking al-

gorithm is showed, it must be noted that when the target to track is a skin colour
region the approach is slightly different. In this case the target and the template are
binary structures representing skin colour and non-skin colour. Thus, the tracking
algorithm uses only binary images and it does not take into account the HSV infor-
mation of these regions. The main steps of the proposed tracking algorithm (Fig. 1.b)
are explained in the following subsections.

4.1 Over-segmentation

The first step is to represent hierarchically the regions of interest ROI (t)
r , ∀r ∈ [1...N],

into the same hierarchical structure using the Bounded Irregular Pyramid. The BIP
is a 4 to 1 structure where each level is generated by reducing the resolution of
the previous one by a factor of four. Thus, a node of a new level l is generated by
averaging the colour of the four nodes immediately below at level l-1. Contrary to
other 4 to 1 structures, the BIP is an irregular structure in which not all sets of 4
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nodes of a level originate a new node in the upper level. Thus, a new node (or valid
node) is generated only when the four nodes below have similar colour. The resulting
structure is an uncomplete regular pyramid. Each pyramidal node n is identified by
(i, j, l) where l represents the level and (i, j) are the (x,y) coordinates within the
level. To build the different levels of the pyramid, each node has five parameters
associated:

• Homogeneity, Hom(i, j, l). Hom(i, j, l) is set to 1 if the four nodes immediately
underneath have colour difference values below a threshold TC and their homo-
geneity values are equal to 1. Otherwise, it is set to 0. In the base or level 0,

Hom(i, j,0) = 1 if (i, j) ∈ ROI(t)
r . Otherwise, Hom(i, j,0) = 0.

• Chromatic phasor, S � H(i, j, l). The chromatic phasor is composed of the satura-
tion (S) and the hue (H) values of the HSV colour space. If the cell is homoge-
neous, S � H(i, j, l) is equal to the average of the chromatic phasors of the four
cells immediately underneath. If the cell is not homogeneous, S � H(i, j, l) is set
to a null value.

• Intensity, V (i, j, l). If the cell is homogeneous,V (i, j, l) is equal to the average of
the intensity values associated to the four nodes immediately underneath. Other-
wise, it is set to a null value.

• Area, A(i, j, l). It is equal to the sum of the areas of the four nodes immediately
underneath.

• Parent link, (X ,Y )(i, j,l). If Hom(i, j, l) is equal to 1, the values of the parent link
of the four cells immediately underneath are set to (i, j). Otherwise, these four
parent links are set to a null value.

It must be noted that only nodes presenting a homogeneity value equal to 1 are valid
nodes. Each valid node is linked to a homogeneous region at the base.

Each ROI(t)
r depends on the target position in the previous frame T (t−1)

r , being
updated as it is described in subsection 4.5. The hierarchical structure can be repre-
sented in each level as:

ROI(t)(l) =
⋃
i j

p(t)(i, j, l) (3)

being p a node of the bounded irregular pyramid built over the ROI.
It must be noted that, once the structure is generated, valid nodes without parent

are regarded as roots of trees defined by their links to lower level nodes. Thus, they
perform an over-segmentation of the regions of interest by defining classes at the
base of the structure.

4.2 Template Matching

Each template M(t)
r and target T (t)

r in every frame t are represented using BIP:

M(t)
r (l) =

⋃
i j

m(t)
r (i, j, l) (4)
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T (t)
r (l) =

⋃
i j

q(t)
r (i, j, l) (5)

In this step, the algorithm looks for the targets T (t)
r using a hierarchical template

matching approach. Starting in the highest level, each template M (t)
r (l) is placed and

shifted in its ROI(t)
r (l) until the target is found or until ROI (t)

r (l) is totally covered. If

a ROI(t)
r (l) was totally covered and the target was not found, this target localization

process would continue in the level below. When all the targets are searched in a
level, the process continues in the level below looking for the targets which have
not been previously found. The displacement of each template can be represented as

d(t)
rk = (d(t)

rk (i),d(t)
rk ( j)) in the range [d(t)

r0 d(t)
r f ]. d(t)

r f is the displacement that situates the
template in the position where the target is placed in the current frame. The algorithm

chooses as initial displacement in the current frame d (t)
r0 = d(t−1)

r f . In order to localize

the target and obtain d (t)
r f , the overlap O(t)

d
(t)
rk

between M(t)
r (l) and ROI(t)

r (l) in each

template displacement k is calculated as:

O(t)

d
(t)
rk

= ∑
i j∈ξ

w(t)
r (mr(i, j, l(t)w )) (6)

being w(t)
r (mr(i, j, l)) a weight associated to m(t)

r (i, j, l) in the current frame t, as ex-
plained in subsection 3.4. ξ is the subset of pixels that satisfy the following condition:

g(r,s) < TC (7)

with
r = f (m(t)

r (i, j, l(t)w ),a(t))
s = p(t)(i+d(t)

rk (i), j +d(t)
rk ( j), l(t)w )

being g(r,s) the colour distance between r and s and TC the colour threshold em-

ployed in the pyramid generation. f (m (t)
r (i, j, l(t)w ),a(t)) is a coordinate transforma-

tion of m(t)
r (i, j, l(t)w ) that establishes the right correspondence between m (t)

r (i, j, l(t)w )
and p(t)(i + d(t)

rk (i), j + d(t)
rk ( j), l(t)w ). a(t) denotes the parameter vector of the trans-

formation, which is specific for the current frame. Eq. (7) is satisfied when a match
occurs.

We consider that a target has been found in a position if the overlap in that posi-
tion is higher than 70%. All the ROI pixels that match with pixels of the template are

marked as pixels of the target in the whole structure ROI (t)
r . Thus, the hierarchical

representation of the target T (t)
r is obtained.

4.3 Target Refinement

To achieve a more accurate appearance of the targets, each T (t)
r is rearranged level

by level following a top-down scheme. From each node of ROI (t)
r that is not in T (t)

r
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a search is performed for all valid neighbour nodes in a 3x3 vicinity which belong
to the target and have a similar colour to it. Among the set of candidates, the studied
node is linked to the most similar one to it.

4.4 Updating Templates

The templates are updated in each frame in order to follow up varying appearances.

To do that, we associate a probability value or weight (w (t)
r (mr(i, j, l))) with each

valid node of the template model. This value places more importance to more recent
data and permits to forget older data in a linear and smooth manner. Each template
is updated as shown in (8):

m(t+1)
r (i, j, l) =

{
m(t)

r (i, j, l) if no match

f−1(q(t)
r (i, j, l),a(t)) if match

(8)

w(t+1)
r (mr(i, j, l)) =

{
w(t)

r (mr(i, j, l))−α if no match
1 if match

(9)

where the forgetting constant, α, is a predefined coefficient that belongs to the inter-
val [0,1].

4.5 Updating Regions Of Interest

Once the targets have been found in the current frame t, each new ROI (t+1)
r is ob-

tained. First, the level 0 of each new region of interest is computed. ROI t+1
r (0) is

made of the pixels of the next frame p (t+1)(i, j, l) which are included in the bound-

ing box of T (t)
r (0) plus the pixels included in an extra border ε of the bounding box.

This extra border ensures that the target in the next frame will be placed in the new
ROI. This step is performed at the end of the tracking process t. Second, at the be-
ginning of the tracking process t +1, the new regions of interest are oversegmented
as it has been previously explained in subsection 4.1.

5 Experimental results

The above described attentional scheme has been examined through experiments
which include humans and objects in the scene. Fig. 2.a shows a sample image se-
quence seen by a stationary binocular camera head. Every 10th frame is shown. All
salient regions are marked by black and white bounding boxes in the input frames. It
must be noted that the activity follows the objects closely, mainly because the tracker
works with the segmented input image instead of working with the saliency image.
This approach has two main advantages: i) the regions of the segmented left image
are more stable across time than the saliency maps regions, and ii) the regions of
the segmented image represent real objects closer than saliency map regions. Fur-
thermore, the tracking algorithm prevents the related object templates from being
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corrupted by occlusions. Backer and Mertsching [1] propose to solve the occlu-
sion problem with the inclusion of depth information. However, depth estimation
is normally corrupted by noise and is often coarsely calculated in order to bound the
computational complexity. In our approach, the tracker is capable of handling scale
changes, object deformations, partial occlusions and changes of illumination. Fig.
2.b presents the saliency maps after inhibiting the regions which have been tracked
in each frame. This inhibition avoids that the region extraction process extracts re-
gions that have been already extracted in previous frames. In frame 1, the yellow
box and the red extinguisher have been detected. The yellow box is tracked over the
whole sequence because its saliency remains high. However, the saliency of the ex-
tinguisher goes down between frames 21 and 30 and therefore it is not tracked from
frame 30 to the end of the sequence. In frame 11, a hand with a green cone is de-
tected in the image. In frame 51, a red box is introduced in the scene. This box is
not detected until frame 91, when it becomes located nearer to the cameras than the
other objects. In frame 81, an occlusion of the green cone is correctly handled by
the tracking algorithm, which is capable to recover the object before frame 91. It can
also be observed how the mechanism follows appearance and view point changes of
the salient objects.

The proposed method runs at 5 frames per second with 128x128 24-bit colour
images, being faster than Backer’s proposal [1] which is reported to take 30 seconds
to process one frame. Beobot [6] runs a saliency mechanism at 30 frames per second
with 160x120 images but, while we use a 850 MHz PC, Beobot uses two 1.26 GHz
dual-CPU computer boards. Besides, Beobot does not include depth or movement
information of the objects in its attentional mechanism.

6 Conclusions

This paper has presented a visual attention mechanism that integrates bottom-up and
top-down processing. The proposed mechanism employs two selection stages, pro-
viding an additional semiattentive computation stage. The object-based computa-
tions performed by this stage improve the selection process itself, specially in dy-
namic environments. In this paper, a new approach for multiple target tracking us-
ing template matching is proposed. This approach permits to track non-rigid objects
without a previous learning of different object views and to run the whole system in 5
frames per second. In the future, the integration of this mechanism with an attentive
stage that will control the field of attention following several behaviors will allow us
to incorporate it in a general active vision system. We have recently incorporated the
proposed attention mechanism in two different applications which are being devel-
oped. The first application is a human motion capture system whose main goal is to
help in the learning process of a humanoid robot HOAP-I. The second application
is a system to parametrice the movements of a human by tracking a set of colour
patches.
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Fig. 2. Example of selected targets: a) left input images; and b) saliency map associated to a)
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