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Summary. In the learning by imitation framework, a module is required to translate the vi-
sually perceived behaviour of the demonstrator’s body to a repgeanwhere the imitator
perceives its own movements, either visually, propioceptively, or bidtis transformation
must take into account the different body configurations of imitator amdashstrator. In this
work, a solution to translation of the visually perceived end-effector mati@resented. The
proposed approach is included in a system which allows a robot to leabetaviour of a
human demonstrator from stereo visual information. Real-time resaltsrasented and dis-
cussed.

Key words: Learning by imitation, body correspondence problem, \lipaacep-
tion.

1 Introduction

Learning by observation and imitation constitute two impot mechanisms for
learning social behaviour in humans and other animal speeig. dolphins, chim-
panzees and other apes [3]. Inspired by nature and in ordreted up the learning
process in complex motor systems, imitation arises as anfahvteol to improve the
learning process [9]. Recent work has demonstrated thatifepby observation and
imitation can help robots to quickly learn new skills andkgafrom natural human
instruction and few demonstrations [4, 8].

One of the main problems that must be solved by a learning Isgrehtion
system is the translation of the perceived behaviour of #raahstrator to an im-
itator’s self-centered reference frame. If the imitaton geerceive visually its own
behaviour, the translation can be formulated as a viewtpi@nsformation problem
[1, 5] . However a complex visuo-motor mapping module mustiged to map the
view-point transformed motion into motor commands. Anraléive approach is to
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assume a kinematic model to estimate the movements of therdgrator. The com-
puted joint angles are used to directly drive the robot n®f6f. These and other
approaches to imitation [8] often assume that demonsteatdrimitator present the
same body configuration.

Our humanoid robot HOAP-1 by Fujitsu presents a large nurobdegrees of
freedom, which nevertheless are not sufficient to considelbady similar to that
of a human demonstrator. Therefore, the previous assumistinot applicable in
our case. This difficulty is often circumvented by imitatiogly the behaviour of
the demonstrator's end-effectors [6, 8]. However, thedia@ion of the perceived
demonstrated motion must be done carefully to respect ljonitls and avoid colli-
sions, while still performing imitation. In this paper, weegent a method to translate
motion that can be employed when demonstrator and imitasemt different body
configurations. The key idea is to quantize the locations tthe end-effectors can
reach using three-dimensional grids. Self-collisionsjaird limits sculpt these grids
into a complex shape which is learnt a priori in a body balgbtage. Imitation is
reduced to choosing the cell of the imitator’s grid that esponds to the perceived
demonstrator cell.

The paper is organised as follows: Section Il is a brief dpgon of the whole
learning by imitation system. This description is necessajustify some principles
adopted to finally implement the proposed motion transtati@dule. Section Il de-
scribes the motion translation module and analyzes the iffereht criteria which
can be chosen to map imitator and demonstrator behavioeeto8 IV shows some
experimental results and, finally, conclusions and futuoekvare presented in Sec-
tion V.

2 Overview of thelearning by imitation architecture

Fig. 1 shows a perspective of the learning by imitation fremr in which the mod-
ule proposed in this paper is integrated. The architectameébe divided into two ma-
jor modules related to visual perception and active inotatiThe stereo visual per-
ception system is the responsible of the detection anditrgck the head and hands
of the demonstrator. This system works without special aksvior markers, using
an attention mechanism which drives attention towards atdior regions. A model-
based pose estimation method based on inverse kinemafiuslifnit enforcement
and collision avoidance [2] reduces noise in the estimatfcthe three-dimensional
location of head and hands. The module presented in thig pamsforms the esti-
mated hand positions to reference frames local to each athe gbbot.

The active imitation module provides the robot with two m®dd imitation.
Thus, it allows the robot to replicate the behaviour of a destrator without seeking
to understand it (action level imitation or mimicking [SBdditionally, it allows
memorization of observed behaviours, and recognition weecently perceived
behaviour corresponds to one of the previously memorized @itrue imitation” or
program level imitation [5]).
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Joint angles are extracted through the use of a kinematicehuafdthe robot
body. This model includes a set of constraints that limitrblgots movements and
avoids collisions between the different body parts of tHzotd2]. The body model
also determines the 3D space which contains the poses thabltiot can achieve.
Finally, in order to recognize previously memorized bebavs, the active imitation
system includes a behaviour comparison module that usesaardy programming
to make a decision on whether a behaviour has been previobsgrved.
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Fig. 1. Overview of the learning by imitation architecture

3 Grid-based approach to solving the cor respondence problem

In any form of imitation, a correspondence has to be estadalibetween demonstra-
tor and imitator. When the imitator body is very similar tottb&the demonstrator,
this correspondence can be achieved by directly mappingdhesponding body
parts. Thus, Lopes and Santos-Victor [5] propose two difieriew-point transfor-
mation algorithms to solve this problem when the imitator esually perceive both
the demonstrator’'s and its own behaviour. However, thelaiity between the two
bodies is not always sufficient to adopt this approach. Isdleases, it is not possi-
ble to establish a simple one-to-one correspondence betiveeoordinates of their
corresponding body parts [7]. However, a robot might ingitathuman behaviour
successfully even without having the same number and typera$ in its head and
neck or arms and hands as the human whose behaviour it emuldmes, Sauser
and Billard [8] describe a model of a neural mechanism by Wwiaig imitator can
map movements of the end-effector performed by other agertsits own frame
of reference. Their work is based on the mapping betweenreddeind achieved
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subgoals, where a subgoal is defined as to reach a similéivegi@sition of the arm
end-effectors or hands. Our work is based on the same assamnpt

In this paper, the mapping between observed and achievegdalsts defined by
using three-dimensional grids, associated to each denadmisand imitator hand.
Fig. 3 shows the grids associated to the end-effectors afé¢h®onstrator and imita-
tor. These grids are internally stored by the robot and caub@Enomously generated
from the human body and robot’s models. The grid providesantijzation of the
demonstrators range of motion and its cells can be relatébteells of the imitators
grid. This relation is not a one-to-one mapping, as the ®mkod-effectors are not
able to reach all the positions that the humans hands cah.r€here is a many-to-
one correspondence between the position coordinatesrefspamding human hands
and robot end-effectors. Thus, two main problems have twhed: i) how to per-
form re-scaling of the observed behaviour to the imitatoid-effectors and ii) how
to estimate the function that determines the egocentrigdior) cell associated to
an observed allocentric (demonstrator) cell.

The problem of the re-scaling can be solved by hand [8], lating the demon-
strator’s observed pose to a final resulting pose that lidlsinvihe imitator’s range
of motion. When a one-to-one mapping between the body padsrabnstrator and
imitator is possible, the robot can solve the re-scalindplenm by itself. Thus, Lopes
and Santos-Victor [5] propose a sensory-motor module tHatva autonomous
learning of the motor commands to reach a certain poseetklat the observed
one by the view-point transformation.

In this work, the grids that define the human demonstratodstas robot imita-
tors range of motion are autonomously acquired in a previaaly babbling stage.
Two strategies are presented below to perform the mappirngelea the observed al-
locentric cell and the corresponding egocentric cell: Oimif scale mapping (USM)
and non-uniform scale mapping (NUSM). Both strategies peceda look-up table
that establishes a suitable many-to-one mapping betweetetls in the demonstra-
tor’s grid and the cells of the imitator’s grid.

3.1 Uniform scale mapping

The length of a stretched arm for both the demonstrator amdntitator gives the
maximum diameters of the corresponding grids. The reldtigtveen these diam-
eters automatically provides a re-scaling factor. If botin& presented the same
ranges of motion, mapping the behaviour of the demonstsadom into that of the
imitator's would be a matter of selecting the same cell inhbgitids. USM starts
by supposing that this is the case. The cell that was reachéltebdemonstrator is
checked for existence in the imitator’s grid. If the cell @&t present, the closest valid
cell in the imitator’s grid is chosen instead.

3.2 Non-uniform scale mapping.

USM may distort the quality of the imitated behaviour if agarpart of it is per-
formed in an area that the robot cannot reach. In partictilarend-effectors of our
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HOAP-1 robot cannot reach the area closest to the shoulaetbe elbows cannot
bend beyond 90 degrees. NUSM models the region around tharhomadel shoul-
der as a sphere, and the region around the robot shouldereagon within two
concentric spheres. NUSM defines a transformation betwetmrbgions which is
applied to all demonstrator cells.

Figure 2 illustrates the difference between both strageg&ing simple two-
dimensional grids. Greyed areas represent the cells tieatahot cannot reach.
Colour is employed to indicate how the cells are mapped keivwibe grid asso-
ciated to the human model (demonstrator) and the grid estsalcio the robot model
(imitator). The following section describes in detail hdvetgrids are obtained and
present a qualitative comparison.
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Fig. 2. The two strategies (USM and NUSM) presented in this paper to match éralesf
positions reached by the human model (demonstrator) and the roblet (imaitator). See text
for details.

4 Experimental results

4.1 Autonomousgrid learning

In order to generate the three-dimensional grids which tgmthe range of motion
of the imitator and demonstrator models, a body babblinigads$ required to deter-
mine reachable end-effector positions. This action candropned automatically,
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by randomly selecting poses from uniform three-dimendignds that envelop the
model. Two grids are generated, one for each arm. Each grhiered in its corre-
sponding shoulder and, after the autonomous exploratiocegs, will contain only
the positions that the corresponding end-effector is abtedch.

The initial grid is a I x d x d) box, whered is the length of the model arm when
stretched. The space within the box is quantized to a limi@chber of positions
(grid cells), which the method can explore exhaustivelysé3athat do not produce
collisions and are reached within joint limits are seleasdalid ones.

Once the subset of all valid cells is extracted from an unifgrid, it conforms
the definitive grid associated to the arm of the demonstratdhe imitator. Fig.
3 shows the grids associated to human and HOAP-1. Valid cetieesent a small
subset of the complete uniform grid. For the human mode}; anlaverage 20% of
the cells are reachable by the end-effectors. For the HOARdel, less than 10%
of the cells are valid.

Fig. 3. a) Grid associated to human right arm, for a cell size of 15 cm; andidy @ssociated
to HOAP-1 left (yellow) and right (red) arms, for a cell size of 45 mm.

The cell size is a parameter of this exploration processisheglected in order
to bound the computational resources. If this size is togelaeach cell defines a
great volume of the range of motion. This can provoke thaptheerior active im-
itation module confuses different behaviours. On the otfzard, if the the volume
defined by the cell is too small, more computational res@ieze needed. The fol-
lowing section presents imitation results with two cellesifor the grids associated
to the demonstrator, 15 cm and 5 cm, which result in a total&f@&d 6533 valid
cells. These would also be the number of entries in the lod&bjes that define the
mapping between the demonstrator and the imitator cells.
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4.2 Qualitative evaluation of the mimicking ability

The proposed system has been tested in our learning byimnifaamework (Section
3), whose goal is to make a Fujitsu HOAP-1 imitates a humanodstrator. The
robot uses the visual information provided by a pair of heamlinted stereo cameras
to perform gesture tracking and recognition. The baselinthie stereo system is
28 mm. The whole system runs on a 3 GHz Pentium IV PC, that séwdpint
angles to the robot. These angles are read by robot’'s own BGemt to motor
controllers via USB. The process is performed in real tih@58rames per second.
The experiments consisted of imitation and learning of a&diving signals. Each
signal conveys a message to fellow divers, and the meanitigsafihessage depends
on a sequence of positions and movements.

It is not the intention of this paper to analyze this learnygimitation frame-
work, but to show the performance of the grid-based solutiche correspondence
problem. Thus, the first experiments reported here modifppimy algorithm and
cell sizes and compare resulting HOAP-1 trajectories.

Fig. 4 shows different codifications of the ’(I want to) go UpGoUp]) gesture.
This gesture consists in moving up and down the right handh Et represents
a cell visited during the movement. Figs. 4.a and 4.b pressstits of USM and
NUSM respectively, using a cell size of 15 cm in the human rhgdds and a cell
size of 45 mm in the robot grids. Figs. 4.c and 4.d use the sdgoeitams, with
cell size of 5 cm for the demonstrator and 15 mm for the imitaAs depicted, the
reduction in cell size produces an increment in the densitysited cells, so that the
resulting HOAP-1 movement is smoother and closer to dematos's trajectory.

The second set of experiments fixed cell size, and alterietiweeen the two dif-
ferent mapping algorithms presented in this paper. Figpctethe cell trajectories
in the XZ (frontal) plane, using USM and NUSM algorithms. Ag.F5.b shows, the
density of cells USM trajectories are coarser than thosemgged by NUSM, which
produce motions with more detail. Besides, NUSM tends tarsgp the end-effector
positions from the robot, avoiding the non-reachable spemé to the shoulders.
This emphasizes the movements, resulting in a better siugeecognition of the
imitated behaviour.

5 Conclusions

In learning by imitation, the correspondence problem casdbeed by a direct one-
to-one mapping between the coordinates of the correspotudidy parts of demon-
strator and imitator. In our case, the imitator is a humamolibt HOAP-1 whose
shape and degrees-of-freedom do not allow us to make thastdne-to-one map-
ping. Similarly to other authors, we choose to circumvenrt thfficulty by formu-
lating the correspondence problem as that of matching eedeand achieved sub-
goals, where a subgoal is defined as to reach a similar reladisition of the imitator
end-effectors or hands. However care must still be takeh joiht-limits and self-
collisions when transforming the perceived end-effeatajettories.
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(b)

() (d)

Fig. 4. Cells visited during imitation of [GoUP] gesture: a) USM. Cell size 45 mm; ENI.
Cell size 45 mm; c) USM. Cell size 15 mm; and d) NUSM. Cell size 15 mm

In this paper we introduce a simple approach based on quaptibth the per-
ceived hand positions of the demonstrator and end-effgaisitions reachable by
the robots using three-dimensional grids. A look-up tabdees a mapping between
cells of each grid. This is a many-to-one mapping, as therdess cells in the grid
associated to the robot. We present two strategies to udiddok-up table. The two
strategies have been tested in an imitation scenario inhndemonstrator and imita-
tor present different body configurations. Initial expegints suggest that movements
are mapped correctly, as imitated actions are recognizeiralsr to demonstrated
ones. Also, the comparison between the two strategiesointtthat, although a
generic uniform mapping is a valid option, a non uniform niagps a better solu-
tion when the relation between demonstrator's and imist@achable spaces can
be roughly established.

Our future work will address the use of these grids to helgirameterizing per-
ceived and executed movements. Grids with different celissappears as a promis-
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Fig. 5. XZ Trajectories of HOAP-1 arms during imitation of different human gesstu

ing tool not only to recognize a particular behaviour, babab refine perception and
imitation.
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