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Summary. In the learning by imitation framework, a module is required to translate the vi-
sually perceived behaviour of the demonstrator’s body to a representation where the imitator
perceives its own movements, either visually, propioceptively, or both.This transformation
must take into account the different body configurations of imitator and demonstrator. In this
work, a solution to translation of the visually perceived end-effector motion is presented. The
proposed approach is included in a system which allows a robot to learn thebehaviour of a
human demonstrator from stereo visual information. Real-time results are presented and dis-
cussed.

Key words: Learning by imitation, body correspondence problem, visual percep-
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1 Introduction

Learning by observation and imitation constitute two important mechanisms for
learning social behaviour in humans and other animal species, e.g. dolphins, chim-
panzees and other apes [3]. Inspired by nature and in order tospeed up the learning
process in complex motor systems, imitation arises as a powerful tool to improve the
learning process [9]. Recent work has demonstrated that learning by observation and
imitation can help robots to quickly learn new skills and tasks from natural human
instruction and few demonstrations [4, 8].

One of the main problems that must be solved by a learning by observation
system is the translation of the perceived behaviour of the demonstrator to an im-
itator’s self-centered reference frame. If the imitator can perceive visually its own
behaviour, the translation can be formulated as a view-point transformation problem
[1, 5] . However a complex visuo-motor mapping module must beused to map the
view-point transformed motion into motor commands. An alternative approach is to
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assume a kinematic model to estimate the movements of the demonstrator. The com-
puted joint angles are used to directly drive the robot motors [6]. These and other
approaches to imitation [8] often assume that demonstratorand imitator present the
same body configuration.

Our humanoid robot HOAP-1 by Fujitsu presents a large numberof degrees of
freedom, which nevertheless are not sufficient to consider its body similar to that
of a human demonstrator. Therefore, the previous assumption is not applicable in
our case. This difficulty is often circumvented by imitatingonly the behaviour of
the demonstrator’s end-effectors [6, 8]. However, the translation of the perceived
demonstrated motion must be done carefully to respect jointlimits and avoid colli-
sions, while still performing imitation. In this paper, we present a method to translate
motion that can be employed when demonstrator and imitator present different body
configurations. The key idea is to quantize the locations that the end-effectors can
reach using three-dimensional grids. Self-collisions andjoint limits sculpt these grids
into a complex shape which is learnt a priori in a body babbling stage. Imitation is
reduced to choosing the cell of the imitator’s grid that corresponds to the perceived
demonstrator cell.

The paper is organised as follows: Section II is a brief description of the whole
learning by imitation system. This description is necessary to justify some principles
adopted to finally implement the proposed motion translation module. Section III de-
scribes the motion translation module and analyzes the two different criteria which
can be chosen to map imitator and demonstrator behaviours. Section IV shows some
experimental results and, finally, conclusions and future work are presented in Sec-
tion V.

2 Overview of the learning by imitation architecture

Fig. 1 shows a perspective of the learning by imitation framework in which the mod-
ule proposed in this paper is integrated. The architecture can be divided into two ma-
jor modules related to visual perception and active imitation. The stereo visual per-
ception system is the responsible of the detection and tracking of the head and hands
of the demonstrator. This system works without special devices or markers, using
an attention mechanism which drives attention towards skincolor regions. A model-
based pose estimation method based on inverse kinematics, joint limit enforcement
and collision avoidance [2] reduces noise in the estimationof the three-dimensional
location of head and hands. The module presented in this paper transforms the esti-
mated hand positions to reference frames local to each arm ofthe robot.

The active imitation module provides the robot with two modes of imitation.
Thus, it allows the robot to replicate the behaviour of a demonstrator without seeking
to understand it (action level imitation or mimicking [5]).Additionally, it allows
memorization of observed behaviours, and recognition whena recently perceived
behaviour corresponds to one of the previously memorized ones (“true imitation” or
program level imitation [5]).
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Joint angles are extracted through the use of a kinematic model of the robot
body. This model includes a set of constraints that limit therobots movements and
avoids collisions between the different body parts of the robot [2]. The body model
also determines the 3D space which contains the poses that the robot can achieve.
Finally, in order to recognize previously memorized behaviours, the active imitation
system includes a behaviour comparison module that uses a dynamic programming
to make a decision on whether a behaviour has been previouslyobserved.

Fig. 1. Overview of the learning by imitation architecture

3 Grid-based approach to solving the correspondence problem

In any form of imitation, a correspondence has to be established between demonstra-
tor and imitator. When the imitator body is very similar to that of the demonstrator,
this correspondence can be achieved by directly mapping thecorresponding body
parts. Thus, Lopes and Santos-Victor [5] propose two different view-point transfor-
mation algorithms to solve this problem when the imitator can visually perceive both
the demonstrator’s and its own behaviour. However, the similarity between the two
bodies is not always sufficient to adopt this approach. In these cases, it is not possi-
ble to establish a simple one-to-one correspondence between the coordinates of their
corresponding body parts [7]. However, a robot might imitate a human behaviour
successfully even without having the same number and type ofjoints in its head and
neck or arms and hands as the human whose behaviour it emulates. Thus, Sauser
and Billard [8] describe a model of a neural mechanism by which an imitator can
map movements of the end-effector performed by other agentsonto its own frame
of reference. Their work is based on the mapping between observed and achieved
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subgoals, where a subgoal is defined as to reach a similar relative position of the arm
end-effectors or hands. Our work is based on the same assumption.

In this paper, the mapping between observed and achieved subgoals is defined by
using three-dimensional grids, associated to each demonstrator and imitator hand.
Fig. 3 shows the grids associated to the end-effectors of thedemonstrator and imita-
tor. These grids are internally stored by the robot and can beautonomously generated
from the human body and robot’s models. The grid provides a quantization of the
demonstrators range of motion and its cells can be related tothe cells of the imitators
grid. This relation is not a one-to-one mapping, as the robots end-effectors are not
able to reach all the positions that the humans hands can reach. There is a many-to-
one correspondence between the position coordinates of corresponding human hands
and robot end-effectors. Thus, two main problems have to be solved: i) how to per-
form re-scaling of the observed behaviour to the imitators end-effectors and ii) how
to estimate the function that determines the egocentric (imitator) cell associated to
an observed allocentric (demonstrator) cell.

The problem of the re-scaling can be solved by hand [8], translating the demon-
strator’s observed pose to a final resulting pose that lies within the imitator’s range
of motion. When a one-to-one mapping between the body parts ofdemonstrator and
imitator is possible, the robot can solve the re-scaling problem by itself. Thus, Lopes
and Santos-Victor [5] propose a sensory-motor module that allows autonomous
learning of the motor commands to reach a certain pose, related to the observed
one by the view-point transformation.

In this work, the grids that define the human demonstrators and the robot imita-
tors range of motion are autonomously acquired in a previousbody babbling stage.
Two strategies are presented below to perform the mapping between the observed al-
locentric cell and the corresponding egocentric cell: Uniform scale mapping (USM)
and non-uniform scale mapping (NUSM). Both strategies produce a look-up table
that establishes a suitable many-to-one mapping between the cells in the demonstra-
tor’s grid and the cells of the imitator’s grid.

3.1 Uniform scale mapping

The length of a stretched arm for both the demonstrator and the imitator gives the
maximum diameters of the corresponding grids. The relationbetween these diam-
eters automatically provides a re-scaling factor. If both arms presented the same
ranges of motion, mapping the behaviour of the demonstrator’s arm into that of the
imitator’s would be a matter of selecting the same cell in both grids. USM starts
by supposing that this is the case. The cell that was reached by the demonstrator is
checked for existence in the imitator’s grid. If the cell is not present, the closest valid
cell in the imitator’s grid is chosen instead.

3.2 Non-uniform scale mapping.

USM may distort the quality of the imitated behaviour if a large part of it is per-
formed in an area that the robot cannot reach. In particular,the end-effectors of our
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HOAP-1 robot cannot reach the area closest to the shoulders,as the elbows cannot
bend beyond 90 degrees. NUSM models the region around the human model shoul-
der as a sphere, and the region around the robot shoulder as a region within two
concentric spheres. NUSM defines a transformation between both regions which is
applied to all demonstrator cells.

Figure 2 illustrates the difference between both strategies using simple two-
dimensional grids. Greyed areas represent the cells that the robot cannot reach.
Colour is employed to indicate how the cells are mapped between the grid asso-
ciated to the human model (demonstrator) and the grid associated to the robot model
(imitator). The following section describes in detail how the grids are obtained and
present a qualitative comparison.

Fig. 2. The two strategies (USM and NUSM) presented in this paper to match end-effector
positions reached by the human model (demonstrator) and the robot model (imitator). See text
for details.

4 Experimental results

4.1 Autonomous grid learning

In order to generate the three-dimensional grids which quantize the range of motion
of the imitator and demonstrator models, a body babbling action is required to deter-
mine reachable end-effector positions. This action can be performed automatically,
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by randomly selecting poses from uniform three-dimensional grids that envelop the
model. Two grids are generated, one for each arm. Each grid iscentered in its corre-
sponding shoulder and, after the autonomous exploration process, will contain only
the positions that the corresponding end-effector is able to reach.

The initial grid is a (d×d×d) box, whered is the length of the model arm when
stretched. The space within the box is quantized to a limitednumber of positions
(grid cells), which the method can explore exhaustively. Poses that do not produce
collisions and are reached within joint limits are selectedas valid ones.

Once the subset of all valid cells is extracted from an uniform grid, it conforms
the definitive grid associated to the arm of the demonstratoror the imitator. Fig.
3 shows the grids associated to human and HOAP-1. Valid cellsrepresent a small
subset of the complete uniform grid. For the human model, only an average 20% of
the cells are reachable by the end-effectors. For the HOAP-1model, less than 10%
of the cells are valid.

Fig. 3. a) Grid associated to human right arm, for a cell size of 15 cm; and b) Grids associated
to HOAP-1 left (yellow) and right (red) arms, for a cell size of 45 mm.

The cell size is a parameter of this exploration process thatis selected in order
to bound the computational resources. If this size is too large, each cell defines a
great volume of the range of motion. This can provoke that theposterior active im-
itation module confuses different behaviours. On the otherhand, if the the volume
defined by the cell is too small, more computational resources are needed. The fol-
lowing section presents imitation results with two cell sizes for the grids associated
to the demonstrator, 15 cm and 5 cm, which result in a total of 223 and 6533 valid
cells. These would also be the number of entries in the lookuptables that define the
mapping between the demonstrator and the imitator cells.
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4.2 Qualitative evaluation of the mimicking ability

The proposed system has been tested in our learning by imitation framework (Section
3), whose goal is to make a Fujitsu HOAP-1 imitates a human demonstrator. The
robot uses the visual information provided by a pair of head-mounted stereo cameras
to perform gesture tracking and recognition. The baseline of this stereo system is
28 mm. The whole system runs on a 3 GHz Pentium IV PC, that sendsthe joint
angles to the robot. These angles are read by robot’s own PC and sent to motor
controllers via USB. The process is performed in real time, at 25 frames per second.
The experiments consisted of imitation and learning of a setof diving signals. Each
signal conveys a message to fellow divers, and the meaning ofthis message depends
on a sequence of positions and movements.

It is not the intention of this paper to analyze this learningby imitation frame-
work, but to show the performance of the grid-based solutionto the correspondence
problem. Thus, the first experiments reported here modify mapping algorithm and
cell sizes and compare resulting HOAP-1 trajectories.

Fig. 4 shows different codifications of the ’(I want to) go Up’([GoUp]) gesture.
This gesture consists in moving up and down the right hand. Each dot represents
a cell visited during the movement. Figs. 4.a and 4.b presentresults of USM and
NUSM respectively, using a cell size of 15 cm in the human model grids and a cell
size of 45 mm in the robot grids. Figs. 4.c and 4.d use the same algorithms, with
cell size of 5 cm for the demonstrator and 15 mm for the imitator. As depicted, the
reduction in cell size produces an increment in the density of visited cells, so that the
resulting HOAP-1 movement is smoother and closer to demonstrator’s trajectory.

The second set of experiments fixed cell size, and alternatedbetween the two dif-
ferent mapping algorithms presented in this paper. Fig. 5 depicts the cell trajectories
in the XZ (frontal) plane, using USM and NUSM algorithms. As Fig. 5.b shows, the
density of cells USM trajectories are coarser than those generated by NUSM, which
produce motions with more detail. Besides, NUSM tends to separate the end-effector
positions from the robot, avoiding the non-reachable spacenext to the shoulders.
This emphasizes the movements, resulting in a better subjective recognition of the
imitated behaviour.

5 Conclusions

In learning by imitation, the correspondence problem can besolved by a direct one-
to-one mapping between the coordinates of the corresponding body parts of demon-
strator and imitator. In our case, the imitator is a humanoidrobot HOAP-1 whose
shape and degrees-of-freedom do not allow us to make this direct one-to-one map-
ping. Similarly to other authors, we choose to circumvent this difficulty by formu-
lating the correspondence problem as that of matching observed and achieved sub-
goals, where a subgoal is defined as to reach a similar relative position of the imitator
end-effectors or hands. However care must still be taken with joint-limits and self-
collisions when transforming the perceived end-effector trajectories.
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Fig. 4. Cells visited during imitation of [GoUP] gesture: a) USM. Cell size 45 mm; b) NUSM.
Cell size 45 mm; c) USM. Cell size 15 mm; and d) NUSM. Cell size 15 mm

In this paper we introduce a simple approach based on quantizing both the per-
ceived hand positions of the demonstrator and end-effectorpositions reachable by
the robots using three-dimensional grids. A look-up table stores a mapping between
cells of each grid. This is a many-to-one mapping, as there are less cells in the grid
associated to the robot. We present two strategies to build this look-up table. The two
strategies have been tested in an imitation scenario in which demonstrator and imita-
tor present different body configurations. Initial experiments suggest that movements
are mapped correctly, as imitated actions are recognized assimilar to demonstrated
ones. Also, the comparison between the two strategies points out that, although a
generic uniform mapping is a valid option, a non uniform mapping is a better solu-
tion when the relation between demonstrator’s and imitator’s reachable spaces can
be roughly established.

Our future work will address the use of these grids to help in parameterizing per-
ceived and executed movements. Grids with different cell sizes appears as a promis-
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Fig. 5. XZ Trajectories of HOAP-1 arms during imitation of different human gestures.

ing tool not only to recognize a particular behaviour, but also to refine perception and
imitation.
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