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Summary. This paper deals with visual tracking of people from a camera mounted on a mo-
bile robot in a human, cluttered, environment. Various visual cues are described, relying on
color, shape or motion, together with several particle filtering strategies taking into account all
or part of the measurements. These strategies enable the combination/fusion of visual cues,
both into an importance function from which the particles are sampled, and into a measure-
ment model serving in the definition of weights. The paper describes some prominent visual-
based interaction modalities for our tour-guide robot and checks which visual cues and filtering
algorithms associations best fulfill their requirements. Extensions are finally discussed.

1 Introduction

The development of personal robots is a motivating challenge in robotics research.
In this context, we have designed and implemented a new tour-guide mobile robot
on the basis of an iRobot B21r platform (figure 1(a)). We have extended the standard
equipment with one pan-tilt Sony camera EVI-D70, one digital camera mounted on
a Directed Perception pan-tilt unit, one ELO touch-screen, a pair of loudspeakers,
an optical fiber gyroscope and wireless Ethernet. Besides endowing the robot with
robust and efficient basic navigation abilities in a dynamic environment, our efforts
concern the design of onboard visual tracking functions in order to interpret the mo-
tion of visitors attending an exhibition. We have outlined three visual modalities
(figure 1) our robot must basically deal with:

1. the “search for interaction”, where the robot, static and left alone, visually
tracks visitors thanks to the camera mounted on its helmet, in order to heckle
them when they enter the exhibition;

2. the “proximal interaction”, where a user can interact through the ELO touch-
screen, for example to select the area he wants to visit; during this interaction,
the robot remains static and must keep, thanks to the camera materializing its
eye, the visual contact with the user;

3. the “guidance mission”, where the robot drives the visitor to the selected area;
during its mission, the robot must also maintain the interaction with the guided
visitor.
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Fig. 1. The Rackham robot (a) and its three visual modalities: search for interaction (b), prox-
imal interaction (c), guidance mission (d).

As the robot’s evolution takes place into dynamic and cluttered environments, sev-
eral hypotheses must be handled at each instant concerning the parameters to be es-
timated, and a robust integration of multiple visual cues must be developed. Particle
filtering seems well-suited to this context. Indeed, it makes no restrictive assumption
on the probability distributions entailed in the characterization of the problem, and
enables an easy combination/fusion of diverse kinds of measurements. Nevertheless,
it can be argued that data fusion using particle filtering schemes has been fairly sel-
dom exploited in the robotics context, for it has often been confined to a restricted
number of visual cues. Moreover, despite numerous particle filtering strategies have
been described in the literature, it is still not clear which ones best fit the require-
ments of the three above visual modalities, so that a study comparing their efficiency
must be carried out in this robotics context.

The paper is organized as follows. Section 2 briefly sums up the well-known
particle filtering formalism, and describes some variants which enable data fusion for
tracking. Then, section 3 specifies some visual measurements which rely on the color,
shape or image motion of the observed target. Section 4 describes the three tracking
setups which best fulfill the requirements for the aforementioned visual modalities.
Last, section 5 summarizes our contribution and puts forward some future extensions.

2 Particle filtering algorithms for data fusion

2.1 A generic algorithm

Particle filters are sequential Monte Carlo simulation methods for the state vector
estimation of any Markovian dynamic system subject to possibly non-Gaussian ran-
dom inputs [1, 2]. Their aim is to recursively approximate the a posteriori probability
density function (pdf) p(xk|z1:k) of the state vector xk at time k conditioned on the
set of measurements z1:k = z1, . . . , zk, through the linear point-mass combination

p(xk|z1:k) ≈
N
∑

i=1

w
(i)
k δ(xk − x

(i)
k ),

N
∑

i=1

w
(i)
k = 1, (1)
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which expresses the selection of a value – or “particle” – x
(i)
k with probability – or

“weight” – w
(i)
k , i = 1, . . . , N . An approximation of the conditional expectation of

any function of xk then follows from (1).
The generic particle filtering algorithm – or “Sampling Importance Resampling”

(SIR) – is shown on Table 1. The particles x
(i)
k evolve stochastically over time, be-

ing sampled from an importance function q(xk|x
(i)
k−1, zk) which aims at adaptively

exploring “relevant” areas of the state space. Their weights w
(i)
k are updated accord-

ingly, so as to guarantee the consistency of the approximation (1). In order to limit
the degeneracy phenomenon, which says that whatever the sequential Monte Carlo
simulation method, after few instants all but one particle weights tend to zero, step 8
inserts a resampling stage. There, the particles x

(j)
k associated to high weights w

(j)
k

are duplicated while the others collapse, so that the sequence x̃
(1)
k , . . . , x̃

(N)
k is i.i.d.

according to
∑N

i=1 w
(i)
k δ(xk − x

(i)
k ). Note that this resampling stage should rather

be fired only when the filter efficiency – related to the number of “useful” particles –
goes beyond a predefined threshold [2].

[{x
(i)
k

, w
(i)
k

}]
N

i=1
= SIR([{x

(i)
k−1, w

(i)
k−1, }]

N

i=1
, zk)

1: IF k = 0, Draw x
(i)
0 ∼p(x0), set w

(i)
0 = 1

N
, so that {x

(i)
0 , w

(i)
0 } depicts p(x0) END IF

2: IF k ≥ 1 THEN {—{x
(i)
k−1, w

(i)
k−1} being a particle description of p(xk−1|z

k−1
1 )—}

3: FOR i = 1, . . . , N , DO
4: “Propagate” the particle x

(i)
k−1 by independently sampling x

(i)
k

∼ q(xk|x
(i)
k−1, zk)

5: Update the weight w
(i)
k

according to the formula w
(i)
k

∝ w
(i)
k−1

p(zk|x
(i)
k

)p(x
(i)
k

|x
(i)
k−1)

q(x
(i)
k

|x
(i)
k−1, zk)

,

prior to a normalization step so that
P

i
w

(i)
k

= 1

6: END FOR
7: Compute the conditional mean of any function of xk , e.g. the MMSE estimate Ep(xk|z1:k)[xk], from the

approximation
P

N
i=1 w

(i)
k

δ(xk − x
(i)
k

) of the posterior p(xk|z1:k)

8: At any time, or according to an “efficiency” criterion, resample {x
(i)
k

, w
(i)
k

} according to

P
`

x̃
(i)
k

= x
(i)
k

´

= w
(i)
k

, which leads to a an equivalent weighted particle set {x̃
(i)
k

, 1
N

} describing
P

N
i=1 w

(i)
k

δ(xk − x
(i)
k

); set x
(i)
k

and w
(i)
k

with x̃
(i)
k

and 1
N

9: END IF

Table 1. Generic particle filtering algorithm (SIR)

2.2 Importance sampling from either dynamics or measurements: basic strategies

The CONDENSATION – for “Conditional Density Propagation” [3] – can be
viewed as the instance the SIR algorithm in which the particles are drawn
according to the system dynamics, viz. when q(xk|x

(i)
k−1, zk) = p(xk|x

(i)
k−1).

This endows CONDENSATION with a prediction-update structure, in that
∑N

i=1 w
(i)
k−1δ(xk − x

(i)
k ) approximates the prior p(xk|z1:k−1). The weighting stage

becomes w
(i)
k ∝ w

(i)
k−1p(zk|x

(i)
k ).

In a visual tracking context, the original algorithm [3] defines the particles like-
lihoods from contour primitives, yet other visual cues have also been exploited [7].
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Resampling by itself cannot efficiently limit the degeneracy phenomenon. In ad-
dition, it can lead to a loss of diversity in the state space exploration. The importance
function must thus be defined with special care.

In visual tracking, the modes of the likelihoods p(zk|xk), though multiple, are
generally pronounced. As CONDENSATION draws the particles x

(i)
k from the sys-

tem dynamics but blindly w.r.t. the measurement zk, many of these can be assigned a
low weight in step 5, thus significantly worsening the overall filter performance. An
alternative – henceforth labelled “Measurement-based SIR” (MSIR) – may merely
consist in sampling the particles at time k – or just some of their entries – according
to an importance function q(xk|zk) defined from the current image. The first MSIR
strategy was ICONDENSATION [4], which guided the state space exploration by a
color blobs detector. Other visual detection functionalities can be used as well, e.g.
face detector (§3), or any other intermittent primitive which, despite its sporadicity,
is very discriminant when present [7]: motion, sound, etc.

2.3 Advanced strategies

In an MSIR scheme, a particle x
(i)
k whose entries are drawn from the current image

may be inconsistent with its predecessor x
(i)
k−1 from the point of view of the state dy-

namics. Of course, the smaller the value p(x
(i)
k |x

(i)
k−1), the lesser the weight w(i)

k . One
solution to this problem, as proposed in the genuine ICONDENSATION algorithm,
consists in sampling some of the particles w.r.t. the dynamics,

An interesting alternative is proposed in [8, Table 4]. Dynamic models of or-
der greater than or equal to 2 are considered, in which the state vector reads
as xk = (u′

k, v′
k, h′

k)′, with ’ the transpose operator. The subvector (u′
k, v′

k)′ – or
“innovation part” – of xk obeys a stochastic state equation on xk−1 while hk

– called “history part” – is a deterministic function f(xk−1). It is assumed that

the particles (u
(i)
k

′
, u

(i)
k

′
)′ are sampled from an importance function such as

q(uk, vk|x
(i)
k−1, zk) = π(uk|zk)p(vk|u

(i)
k , x

(i)
k−1) – i.e. the subparticles u

(i)
k are posi-

tioned from the measurement only while the v
(i)
k ’s are drawn by fusing the state

dynamics with the knowledge of u
(i)
k –, and that the pdf of the measurement con-

ditioned on the state satisfies p(zk|xk) = p(zk|uk, vk). This context is particularly
well-suited to visual tracking, for equivalent state-space representations of linear AR
models entail the above decomposition of the state vector, and because the output
equation does not involve its “history part”.

The authors define procedures enabling the avoidance of any contradiction be-

tween (u
(i)
k

′
, u

(i)
k

′
)′ and its past x

(i)
k−1. Their “Rao-Blackwellised Subspace Particle

Filter with History Sampling” (RBSSHSSIR) is summarized in Table 2. Its step 5
noticeably consists, for each subparticle u

(i)
k positioned using zk, in the resampling

of a predecessor particle – and thus of the “history part” of x
(i)
k – which is at the same

time likely w.r.t. u(i)
k from the dynamics point of view and assigned with a significant

weight. The RBSSHSSIR algorithm differs from ICONDENSATION precisely be-
cause of this stage, yet necessary lest the weighted particles {x(i)

k , w
(i)
k } may not be

a consistent description of the posterior p(xk|z1:k). Last, though the demonstration
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goes outside the scope of this paper, it can be shown that the algorithm also applies
when the state process is of the first order, in which case it just suffices to suppress
the entry f(xk−1) from xk.

[{x
(i)
k

, w
(i)
k

}]
N

i=1
= RBSSHSSIR([{x

(i)
k

, w
(i)
k

}]
N

i=1
, zk)

1: IF k = 0, Draw x
(i)
0 ∼p(x0), set w

(i)
0 = 1

N
, so that {x

(i)
0 , w

(i)
0 } depicts p(x0) END IF

2: IF k ≥ 1 THEN {—{x
(i)
k−1, w

(i)
k−1} being a particle description of p(xk−1|z

k−1
1 )—}

3: FOR i = 1, . . . , N , DO
4: Draw u

(i)
k

∼ π(uk|zk)

5: Sample in (1, . . . , N) the index I
(i)
k

of the predecessor particle of u
(i)
k

according to the weights

(w
(1)
k−1p(u

(i)
k

|x
(1)
k−1), . . . , w

(N)
k−1p(u

(i)
k

|x
(N)
k−1))

6: Draw v
(i)
k

∼ p(vk|u
(i)
k

, x
I
(i)
k

k−1)

7: Set x
(i)
k

=
`

u
(i)
k

′
, v

(i)
k

′
, f(x

(I
(i)
k

)

k−1 )

′
´

′

8: Update the weights, prior to their normalization, by setting w
(i)
k

∝
p(zk|u

(i)
k

)
P

N
l=1 w

(l)
k−1p(u

(i)
k

|x
(l)
k−1)

π(u
(i)
k

|zk)

9: Compute the conditional mean of any function of xk , e.g. the MMSE estimate Ep(xk|z1:k)[xk], from the

approximation
P

N
i=1 w

(i)
k

δ(xk − x
(i)
k

) of the posterior p(xk|z1:k)

10: END FOR
11: END IF

Table 2. Rao-Blackwellised Subspace Particle Filter with History Sampling (RBSSHSSIR)

Last, it must be mentioned that the “optimal recursive strategy” [2] – in
terms of filter efficiency – should define q∗(xk|xk−1, zk) , p(xk|xk−1, zk) and
w

∗ (i)
k ∝ w

∗ (i)
k−1p(zk|x

(i)
k−1) in the SIR algorithm Table 1. Except in very particular

cases, such formulae can only be approximated in practice, e.g. through the Auxiliary
Particle Filter (APF) [6]. Though this strategy has also been evaluated in the current
visual tracking context, its details are not included for space reasons, all the more
because it was shown to be superseded by the aforementioned schemes.

3 Importance and measurement functions

Fig. 2. Shape
cue.

Importance sampling offers a mathematically principled way of
directing search according to visual cues which are discriminant
though possibly intermittent, e.g. motion. Such cues are logical
candidates for detection modules and efficient proposal distribu-
tions. Besides, each sample weight is updated taking into account
its likelihood w.r.t. the current image. This likelihood is computed
by means of measurement functions, according to visual cues (e.g.
color, shape) which must be persistent but may however be proner
to ambiguity in cluttered scenes. In both importance sampling and
weight update steps, combining or fusing multiple cues enables the
tracker to better benefit from distinct information sources, and can decrease its sen-
sitivity to temporary failures in some of the measurement processes. Measurement
and importance functions are depicted in the next subsections.
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3.1 Measurement functions

1. Shape cue: The use of shape-based cues requires that silhouette templates of hu-
man limbs have been learnt beforehand (figure 2). Each particle x is classically given
an edge-based likelihood p(zS |x) that depends on the sum of the squared distances
between Np points uniformly distributed along the template corresponding to x and
their nearest image edges [3], i.e.

p(zS |x) ∝ exp

(

−
D2

2σ2
S

)

, D =

Np
∑

j=1

|x(j) − z(j)|, (2)

where the similarity measure D involves each j-th template point x(j) and associated
closest edge z(j) in the image, the standard deviation σS being determined a priori.

2. Color cue: Reference color models can be associated with the targeted ROIs.
These models are defined either a priori, or on-line using some automatic detec-
tion modules. We denote the Nbi-bin normalized reference histogram model in
channel c ∈ {R,G,B} by hc

ref = (hc
1,ref , . . . , hc

Nbi,ref ). The color distribution
hc

x = (hc
1,x, . . . , hc

Nbi,x
) of the region Bx corresponding to the state x is computed

as
hc

j,x = cH

∑

u∈Bx

δj(b
c
u), j = 1, . . . , Nbi, (3)

where bc
u ∈ {1, . . . , Nbi} denotes the histogram bin index associated with the inten-

sity at pixel u in channel c of the color image, δa terms the Kronecker delta function
at a, and cH is a normalization factor. The color likelihood model must be defined
so as to favor candidate color histograms hc

x close to the reference histogram hc
ref .

The likelihood p(zC |x) has a form similar to (2), provided that D terms the Bhat-
tacharyya distance D(hc

x, hc
ref ) [7] between the two histograms hc

x and hc
ref .

To overcome the ROIs appearance changes in the video stream, the target refer-
ence model is updated from the estimates in each frame through a first-order filtering
process, so that the farther a frame in the past, the least its contribution [7]. Moreover,
in order to avoid the tracker to be distracted by color-like clutters, one can make the
likelihood p(zC |x) depict the similarity of several color patches related to the parti-
cle x w.r.t. convenient reference values. In other words, it may be worth splitting the
ROI into subregions, e.g. the face and clothes of a person, each with its own reference
color model.

3. Motion cue: In our context, it is highly possible that the targeted subject be mov-
ing, at least intermittently. To cope with background clutter, we thus favor the mov-
ing edges (if any) by combining motion and shape cues into the definition of the
likelihood of particle x. Given

−→
f (z(j)) the optical flow vector for pixel z(j), the

similarity distance D in (2) is then replaced by

D =

Np
∑

j=1

|x(j) − z(j)| + ργ(z(j)), (4)

where γ(z(j)) = 0 (resp. 1) if
−→
f (z(j)) 6= 0 (resp. if

−→
f (z(j)) = 0) and ρ > 0 terms

a penalty.
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4. Multi-cues fusion: The above measurements are assumed mutually independent
conditioned on the state, i.e. weak correlation exists between the color, motion and
shape of the tracked object. Given M measurement sources (z1, . . . , zM ), the global
measurement function thus factorizes as

p(z|x) =

M
∏

m=1

p(zm|x). (5)

3.2 Importance functions

1. Shape cue: We use the face detector introduced by Viola et al. [9]. It is based on
a boosted cascade of Haar-like features to measure relative darkness between eyes
and nose/cheek or nose bridge. Let B be the number of detected faces and b

′S
n the

centroid coordinate of each such region. An importance function q(.) at location
x = (uk, vk) follows, as the Gaussian mixture

q(x|zS) =

B
∑

n=1

δS
n .N (bS

n , ΣS
B), (6)

where b
S
n = b

′S
n + X̄S

B . The vector X̄S
B and matrix ΣS

B , which respectively term
the mean and covariance of the offset from the ROI position to the centroid of the
associated contour describing a face, are learnt off-line.

2. Color cue: Human skin colors have a specific distribution in color space. Training
images from database [5] are used to construct a reference color histogram model
in (R,G,B). Blobs detection is performed by subsampling the input image prior
to grouping the classified skin-like pixels. The importance function q(x|zC) on the
detected blobs is defined by a Gaussian mixture similar to (6).

3. Motion cue: For a static camera, a basic method consists in computing the
luminance absolute difference image from successive frames. To detect regions
of significant motion activity, we define the reference motion histogram hMref as
hM

j,ref = 1
Nbi

, j = 1, . . . , Nbi (see [7] for details). We evaluate here the Bhat-
tacharyya distance D(hM

x , hM
ref ) on a subset of locations obtained by subsampling

the image. These locations are taken as the nodes of a regular grid. Locations that
satisfy D2(hM

x , hM
ref ) > τ are selected. In the vein of (6), the importance function

q(x|zM ) is a mixture centered on the detected locations of high motion activity.

4. Multi-cues mixture: The importance function q(.) can be extended to consider
the output from M detection modules, i.e.

q(x|z) =
1

M

M
∑

j=1

q(x|zj). (7)
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4 Trackers for our “Tour-Guide Robot” modalities

For our three visual modalities, the aim is to fit the template relative to the tracked
visitor all along the video stream, through the estimation of its image coordinates
(u, v), its scale factor s, as well as, if the template is shape-based, its orientation
θ. All these parameters are accounted for in the state vector xk related to the k-
th frame. With regard to the dynamics model p(xk|xk−1), the image motions of
observed people are difficult to characterize over time. This weak knowledge is
thus formalized by defining the state vector as xk = [uk, vk, sk, θk]

′

and assum-
ing that its entries evolve according to mutually independent random walk models,
viz. p(xk|xk−1) = N (xk|xk−1, Σ), where N (.|µ,Σ) is a Gaussian distribution with
mean µ and covariance Σ = diag(σ2

u, σ2
v , σ2

s , σ2
θ).

A preliminary evaluation enables the selection of the most meaningful visual
cues associations in terms of discriminative power, robustness to artefacts (e.g. clut-
ter or illumination changes) and time consumption, be these cues involved in the
importance or measurement functions. As a result, dedicated visual cues are selected
for each modality.

The filtering strategies depicted in § 2 are then evaluated in order to check
which ones best fulfill the requirements of the considered H/R interaction modali-
ties. For the sake of comparisons, importance functions rely on dynamics or mea-
surements alone (and are respectively noted DIF for “Dynamics-based Importance
Function” and MIF for “Measurement-based Importance Function”), or combine
both (and are termed DMIF for “Dynamics and Measurement-based Importance
Function”). Further, each modality is evaluated on a database of sequences ac-
quired from the robot in a wide range of typical conditions: cluttered environments,
appearance changes or sporadic disappearance of the targeted subject, jumps in
his dynamics, etc. For each sequence, the mean estimation error with respect to
“ground truth”, together with the mean failure ratio (% of target loss), are com-
puted from several filter runs. The associated figure plots are not shown here for
space reasons but they can be found at www.laas.fr/ ∼lbrethes/KE2 2k5 .
These results motivate our choices depicted hereafter for the three visual modal-
ities. The processing sampling rate of all these modalities ranges from 20Hz to
50Hz on a 3GHz Pentium IV for a particles number ranging from 100 to 200.

Fig. 3.
The tem-
plate.

4.1 Tracker dedicated to the search for interaction

Regarding this modality, color and motion ROIs, as shown in figure 3, are
fused into the particles likelihood (5). The importance function involves
the motion detector, yielding q(xk|z

M
k ).

The two filters MSIR/RBSSHSSIR are well-suited to this modal-
ity. The hierarchical scheme contitutes an alternative, along the lines of
Perez et al. in [7]. However, though its intermediate sampling step enables
the particles cloud to remain more focused on the target, which results in
a tracking error decrease, its failure ratio is significantly pronounced on
sequences showing occultations of the target. As robustness is prefered to precision
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for our application, we finally opt for the RBSSHSSIR algorithm using a Dynam-
ics and Measurement-based Importance Function. Figure 4 shows a tracking run for
such a scenario.

Fig. 4. A scenario involving persistent occlusions due to persons. Tracker based on a DMIF
into the RBSSHSSIR algorithm.

4.2 Tracker dedicated to the proximal interaction

Fig. 5. The
template.

The selected tracking strategy for proximal interaction combines shape
and motion cues (figure 5, eq. (4)) into a CONDENSATION algorithm.
Indeed, evaluations show that Dynamics-based Importance Functions
lead to a better precision together with a low failure ratio, so that detec-
tion modules are not necessary in this easiest context. Moreover, among
the filtering strategies, the CONDENSATION enjoys the least time con-
sumption.

4.3 Tracker dedicated to the guidance mission

Regarding this modality, shape and color cues are also fused into the particles like-
lihoods (5). Considering multiple patches of color distribution (figure 6) along with
an update of the reference histograms hc

ref , enables the tracker to keep focusing on
the guided visitor even if several persons enter the camera field of view.

Fig. 6. The
template.

The importance functions of the MSIR and RBSSHSSIR strategies
combine the outputs from color blob and face detectors along eq. (7).
These associations lead to lower false negatives for a given detection
rate. Experiments on sequences including cluttered background and/or
appearance changes prove that fusing measurements clearly improves
the discriminative power while MSIR and RBSSHSSIR strategies are
shown to perform as well as CONDENSATION. Experiments on the
sequences subset including additional sporadic disappearances (due to
occlusions or to the limits of the camera field of view) highlight the efficiency of
MSIR/RBSSHSSIR strategies in term of failure ratio. Figure 7 shows a tracking
run in this context. In fact, these two strategies have the ability to recover from such
artefacts because some particles are drawn from the visual detectors in the proposal.
Finally, the RBSSHSSIR filter leads to a slightly better precision than MSIR. The
nice property of the RBSSHSSIR strategy is to associate more efficiently particles
sampled from the proposal and their plausible predecessors thanks to resampling
stages.
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Fig. 7. Tracking scenario involving occlusions with RBSSHSSIR and DMIF. The blue (resp.
red) rectangles depict all particles (resp. the MMSE estimate).

5 Conclusion

In this paper we introduced mechanisms for data fusion within particle filtering to
develop trackers combining/fusing color, motion and shape cues in a novel way. The
most persistent of them were used in the particles weighting stage. The others, log-
ically intermittent, act in detection and initialization modules. Dedicated particle
filtering strategies have been evaluated in order to check which trackers regarding
visual cues and algorithms associations best fulfill the requirements of considered
robotics scenarii dedicated to H/R interaction. The multi-cues associations proved to
be more robust than any of the cues individually. Finally, we have integrated these
trackers on our robot to highlight the relevance of our visual modalities.

In a near future, we plan to fuse other information such as sound cues and adapt
our tracker to be able to track multiple persons simultaneously. Further evaluations
will consider trackers not exclusively limited to particle filtering.
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8. P. Torma and C. Szepesvári. Sequential importance sampling for visual tracking reconsid-
ered. In AI and Statistics, pages 198–205, 2003.

9. P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
In Int. Conf. On Computer Vision and Pattern Recognition, 2001.


