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Abstract This article presents the development of a human-robot interaction mech-
anism based on vision. The functionalities required for such mechanism range from
user detection and recognition to gesture tracking. The employed methods to attain
these required functionalities are described with results presented.

1 Introduction and framework

A major challenge, of the actuality, is undoubtelly the companion robot with
the perspective of enabling a mobile autonomous machine to support modal-
ities which are common in the interaction between humans. Gesture-based
interaction is especially valuable in environments where the speech-based com-
munication may be garbled or drowned out.

Figure 1. User interacting with
Rackham

Such interactions allow a robot com-
panion to learn about the geometry and
topology of the environments, the geome-
try, identity and location of objects, as well
as their spatiotemporal relations. Once
such companion robot has learnt, with the
help of its tutor, all these informations, it
can start interacting with its environment
autonomously. In this context, we have de-
signed and built a mobile robot named
Rackham, a B21r robot made by iRobot,
and which integrates some of the function-
alities described in this paper. The visual
interaction between humans and Rackham
starts when it focuses its attention on spe-
cific persons (i.e. tutors) who are detected
and identified in its vicinity. The interact-
ing person must be identified before receiv-
ing the grant to interact with the robot.
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This requires to keep track on the detected persons while one is not iden-
tified as a possible tutor. Maintaining the interaction link requires that an
identity verification step be executed repeatedly, otherwise the robot could
jump its attention from the current person to any other person present in its
neighbourhood.

As an example of interaction with the robot, the identified tutor can order
the robot to follow him. The robot complies, thanks to its basic mobility and
visual analysis abilities. During the guidance task, the robot has to coordi-
nate its displacements, even if coarsely, with the tracked user, without being
distracted by other people. Having reached the desired place, the user signals
the mission end by a ’halt’ gesture. These two modalities are developed using
approaches that, although providing only a coarse tracking granularity, are
fast and robust.

The user can then interact actively with the robot using not only to com-
municative but also deictic gestures as they constitute an efficient modality
to transmit information to the robot about the environment around it. For
this, as will be described later in this article, we perform the 3D tracking of
the user’s limbs using a single camera.

Our strategy uses a single view of the person to track, what is made
possible by increasing the reliability and specificity of the observation model.
This aims to deal with some of the requirements of a mobile robot. First on-
board sensors are moving and with limited field of view. As that the robot
is expected to evolve in environments which are highly dynamic, cluttered,
and frequently subjected to illumination changes, several hypotheses must be
handled simultaneously. This is due to the multi-modality in the distributions
of the measured parameters, as a consequence of the clutter or changes in
the clothing appearance of the targeted subject. To cope with this, a robust
integration of multiple visual cues is required.

Particle filtering seems to be well-suited to this context, as it makes no
restrictive assumptions about the probability distributions and enables the
fusion of diverse measurements in a simple way. Although this fact has been
acknowledged before [8], it has not been fully exploited in visual trackers, for
which a general review can be found in [2]. Combining a host of cues may in-
crease the tracker versatility and reliability in our robotic context. Some of the
variants of the particle filter are expected to fulfill to the requirements of each
the different modalities that compose the Rackham interaction mechanism.

The paper is organized as follows. Section 2 presents the overall architec-
ture of the interaction mechanism. Sections 3 and 4 depict the tracking setups
dedicated to the two first modalities i.e. the user identification and the robot
guidance. Regarding the gesture-based interaction, section 5 details our ap-
proach for the 3D tracking of the upper human limbs and presents the results
from one of the test sequences. Last, section 6 summarizes our contribution
and opens the discussion for future extensions.
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2 Architecture

Figure 2 presents the functioning of the overall system, where three main parts
can be clearly identified. The first one is dedicated to user face detection and
identification.

� � � �

� � � � � � � � 	 � 

� � 
 � � � � 
 � � 
 � � � � � � � � � � 

� � � 
 � � � � � � � � � � � � � 
 � 
 � �
�  � 
 � � 
 � ! � � � � 


" � � 
 � � 
 � � # � � � � � � � � # � � � $
" # � � 
 � � � 
 � � � $

� 
 % & ' ( � ) 	 � 
 �
� � 
 � � � � � � 
 � � � 
 � � � � � �
� � � * � � � � 
 � � � � � � � � �
� � � � � � 
 � � � � � � 
 � � �
! � � � 
 � � � � # � � � �
�  � 
 � + 
 � ! 
 � � � � � �

, � % 
 - . - ( / � � � � 	 � 

� � � 0 � ! 
 � � � 1 2 � � � �
� � � � � � � � 
 # � � � � �
! � � � 
 � � � � � � ! � � � � � �

 # � � 3

" � � � � 
 � ! ! � � � � �
� � � � 
 # � � 4
� � � � $

5 � � � � � � � � � � � � �
6 � 
 � � � 
 � � � �

7 % . 	 8 � 
 � � 	 � 

� � � � � 
 � � 
 � � � � � � � �
� � � ! � � � 
 # � � 
 �
� � 
 � � � � � 3

" 6 � 
 � � � ! ! � � � � � $

" 6 � 
 � � � � � 
 $

" # � � 
 � � � 
 � � � $

" � � 
 � � 
 � � # � � �
� � � � � # � � � $

Figure 2. States of our active H/R interaction
scheme

The system remains in this
state until a known tutor ap-
pears. This event generates
a transition to a “waiting”
or idle state. This new state
continues to verify the pres-
ence of the tutor and tests
the input image for the pres-
ence of a hand in the open
upright position. The relative
position of the detected hand
and the head defines the tran-
sition to the “tutor following”
state or the “gesture track-
ing” state. In the former, the
robot has to move following
the user, and in the latter
it tracks the user’s gestures
what can be used for commu-
nicate orders or point an ob-
ject, a feature or another user
to be leant. These functional-
ities are described in the fol-
lowing sections.

3 User Face Recognition and Tracking

Aiming to identify or confirm the identity of the person that is in the vicinity
of the robot this module is composed of three parts, depicted hereafter and
which are: face detection, face recognition and face tracking.

Face Detection: The method used for face detection was introduced by Viola
et al. [12] and is based on a boosted cascade of classifiers built on Haar-like
features. This detector relies on the relative contrast between some anatomical
parts like the eyes and nose/cheek or nose bridge. The cascade of classifiers
behaves as a degenerated decision tree where each stage contains a classifier
which is trained to detect all frontal faces and reject only a small fraction of
non-face patterns. At the end of the cascade, we can expect that “almost” all
the non-face regions have been rejected, retaining for sure those containing
faces. Figure 3 shows some examples where the rectangles outline the detected
faces. The coordinates of these rectangles are are fed to next processing stage
which performs the user recognition.
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Face Recognition: The face recognition step is based on the eigenfaces
method introduced by Turk et al. [11]. Eigenvector-based methods are used to
represent the learnt faces using low-dimensional vectors and then make it ad-
equate both for storage and processing proposes. The Karhunen-Loeve Trans-
form (KLT) and Principal Components Analysis (PCA) are the eigenvector-
based techniques we use for dimensionality reduction and feature extraction
in this automatic face recognition. Although this is a fast method, it imposes
that every treated image be of the same size, and that all the objects to occupy
most of that image. The combined face recognition system shows good results
and acceptable processing times for eigenspaces created with 20 eigenimages.

Figure 3. Three frames from the face
recognition output

Figure 3 shows three frames of
a given sequence.The face detec-
tor marks the three faces but only
one (marked as green) is recognised
as corresponding to the previously
learnt eigenspace.

Face Tracking: : As another authorised tutor can be in the neighbourhood
and the system could switch from one to the other. To avoid this, the eigenface
descriptor of the selected user is used to verify that the interaction link is
kept with the user that initiated it. The very sensitive nature of the face
detector reflects in the production of false negatives. This can be filtered out
by approximating the user’s motion by a constant velocity model in a Kalman
filter. The face recognition can then be accelerated by performing the face
detection only on a region centred on and limited by, the estimated position
and covariance, respectively [5].

Another possibility is the use of the output of the face recognition to
initialise a particle filter prior, or to use it in the importance function as in [1]
for a I-Condensation implementation [4].

Using the Haar Detector to Detect Hands: The Haar-feature based
algorithm was also successfully tested as a hand detector. For this, the clas-
sifier was trained with 2000 images containing upright hands, and 6000 im-
ages without hands and used as negative samples. This detector exhibits a
slightly smaller detection rate, than the previous, due to the lack of discrimi-
nant contrasts in the hand. Figure 4 shows some examples of hand detection.

Figure 4. Output of the hand de-
tector

These results show that the obtained de-
tector is able to cope with some deviance
in hand orientation from the vertical. The
detection of the open hand in this work is
used to trigger the change from the cur-
rent state to a new one. So once a hand is
detected while in the “idle” state, the head
detector is launched to find their relative positions to select the next modality
to use.
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4 User tracking dedicated to tutor following

Regarding the guidance task, the robot has to coordinate its displacements
with the guiding user. Although not requiring an important precision, the
robot has to track the latter’s motion. Once started, this tutor following
modality runs until a open hand is detected, what can be interpreted as a
“halt” sign.

To perform the required user tracking, we use the Condensation algorithm,
as it is well adapted and permits a simple implementation. This estimates the
state vector −→x = [x, y, θ, s]

′

which is composed of the position, orientation,
and scale of the target in the image. The used measure is based on colour
cues as they seem to be well-suited for this, even if we have to handle the
appearance changes due to illumination conditions, out-of-plane rotated faces,
and robot motions. To overcome these appearance changes, we perform the
update of the target’s color model, allowing the on-line integration of limited
variations of the observed characteristics with respect to the current reference
model [7].

Figure 5. Influence of the multi-
part color model in the tracker

One must be aware that the use of dy-
namically updated models in trackers can
lead to drifts with the consequent loss of
the target. On the other side, if a fixed
model is used and the target’s appearance
can change due to its own motion, to the
variations of the illumination conditions,
or to any other reason, the target loss is
inevitable as the model stops correspond-
ing to the observations [8]. A strategy is
by consequence required to perform model
update and ensure that model drift will not
occur.

The used solution consists in using models composed of multiple colour-
patches which are combined with shape cues in the computation of global
likelihood (1) needed to the particle weighting step. Figure 5 shows some snap-
shots from a sequence including temporary occlusions. With a single colour
patch, the tracker would naturally adapt and lock to a wrong target that
passes in the foreground. When using a multi-patch model, the tracker keeps
locked onto the correct target even after the occlusion.

5 3D Tracking for Gesture-Based Interaction

Gestures are commonly used to communicate or to simplify the communi-
cation between people. Consequently they appear as an excellent form to
transmit orders to a robot, or to refer to objects, locations, etc.

In our case, a particle filter-based tracker using a single camera as the infor-
mation source, estimates the configuration of arms. The configuration vector,
which represents a point in the 8-dimensional configuration space, cannot be
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compared directly to the images. Instead of that, the estimation is based on
the observed appearance of the tracked subject in the input the images. Un-
fortunately, this measure-state link presents strong non-linearities inherent to
the projective projection process but also due to ambiguities produced by
partial concealing that occur between body parts. The particle filter is quite
adapted to these situations as it can handle not only nonlinear models but
also non-Gaussian distributions.

Contrary to the Kalman filter, where the state distribution is represented
by a mean and covariance, the particle filter represents this by a set of weighted
samples. For the current case, each sample represents an hypothetic joint
configuration of the two arms. Its weight is then computed by obtaining the
projection of the model corresponding to this particle, and then compare the
result to the input image. Both the construction of the model for the arms
model based on quadrics and the generation of its projection is described
in [6].

This tracking process, can be viewed as the iterative minimisation of a
dynamic cost function, that evolves as the input view of the target changes
over time. Its robustness depends, by consequence, on the shape of this cost
function. If it presents multiple peaks, the tracker may be attracted to the
wrong one with the consequent target loss, and if we succeed in making it
unimodal or exhibiting a strong peak around the true point of the configura-
tion space, the tracker will behave more robustly. One additional advantage
of the particle filters is that even if the true shape of this cost function is not
available, it can still be used as long as its value can be evaluated for any
given point of the configuration space.

5.1 Robust cost function

The cost function employed is a combination of several image measures related
to the model and to some parameters that encode prior knowledge about the
model or its physical properties. Used in the weighting step of the particle
filter, this function is, by definition, proportional to the following probability
density, p(z|x), which represents the likelihood of the observed measure z

given the configuration x. Considering that it is the combination of a set
of M measures obtained from independent sources (z1

k, . . . , zM
k ), it can be

factorised as

p(z1

k, . . . , zM
k |x) ∝

M
∏

m=1

p(zm
k |x). (1)

The following subsections detail the various factors employed in the used
cost function and which are related to image based measures and to physical
properties of the model.

Shape cues: In our context, coarse 2D ou 3D models of the targeted limbs can
be used. In a simple view-based shape representation, the limbs can therefore
be represented by coarse silhouette contours. This kind of model, although
simplistic, permits to reduce the complexity of the involved computations.
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Indeed, this estimation process requires a preliminary 3D model projection
with hidden parts removed.

The associated likelihood is computed using the sum of the squared dis-
tances between model points and the nearest image edges [3]. The use of a
Distance Transform, noted IDT , obtained from the edges of the input image
enables to avoid the search for edges in the neighbourhood of the projected
contours. In addition to reduce the computational load, the use of the DT
provides a smoother function of the model parameters.

The edge-based marginal likelihood p(zS
k |x) is then given by

p(zS
k |x) ∝ exp

(

−
D2

2σ2
s

)

, D =

Np
∑

j=0

IDT (j), (2)

where j indexes the Np model points uniformly distributed along each visible
model projected segments and IDT (j) the associated value in the DT image.

Motion cues: In this context as the robot remains static during the gesture
interaction, the used assumption is that the tutor arms are moving in front of
a static background. This allows to cope with cluttered scenes and reject false
background attractors, by favouring the moving edges, as they are expected
to correspond to the moving target. As the target can be temporarily stopped,
the static edges are not completely rejected, but only made less attractive than
the moving ones. This is accomplished by using two DT images, noted IDT

and I
′

DT , where the new one is obtained by filtering out the static edges, based
on the local the optical flow vector f(z). From (2) and given K a constant,
the new distance D is given by

D =

Np
∑

j=0

min
(

IDT (j), K.I
′

DT (j)
)

.

Color cues: Reference colour models can be associated with the targeted
ROIs. We denote the B-bin reference normalized histogram model in channel
c ∈ {R, G, B} by hc

ref = (hc
1,ref , . . . , hc

Nbi,ref ). The colour distribution hc
x =

(hc
1,x, . . . , hc

Nbi,x
) of a region Bx corresponding to any state x is computed as

hc
j,x = cH

∑

u∈Bx

δj(b
c
u), j = 1, . . . , Nbi. bc

u ∈ {1, . . . , Nbi} denotes the histogram

bin index associated with the intensity at pixel u in channel c of the colour
image, δa terms the Kronecker delta function at a, and cH is a normalisation
factor. The colour likelihood model must be defined so as to favour candidate
colour histograms hc

x close to the reference histogram hc
ref . From (2), the

likelihood p(zC
k |x) is based on the Bhattacharyya coefficient [8] between the

two histograms hc
x and hc

ref . This likelihood can be extended to consider
to consider several patches of distinct colours, e.g. the limbs and clothes of a
person. It suffices to split the ROI into subregions, each with its own reference
colour model [8].

From this measure, we can also define a likelihood p(zT
k |x) relative to

textured patches based on the intensity component.
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Non-observable parts stabilisation: Despite the visual cues depicted
above, ambiguities arise when certain model parameters cannot be inferred
from the current image observations, especially for a monocular system. They
include, but are not limited to, kinematic ambiguities. For instance, when one
arm is straight and the edge-base likelihood (2) is used, rotation of the upper
arm around its axial axis is unobservable, because the model projected con-
tours remain static under this DOF. Leaving these parameters unconstrained
is questionable. For this reason, and like in [10], we control these parame-
ters with a stabiliser cost function that reaches its minimum on a predefined
resting configuration xdef . This enables the saving of computing efforts that
would explore the unobservable regions of the configuration space. In the ab-
sence of strong observations, the parameters are constrained to lie near their
default values whereas strong observations unstick the parameters values from
these default configurations. The likelihood function for a state x is defined
as:

pst(x) ∝ exp(−λst||xdef − x||2). (3)

This prior only depends on the structure parameters and the factor λst will
be chosen in a way that the stabilising effect will be negligible for the whole
configuration space with the exception of the regions where the other cost
terms are constant.

Collision detection: Physical consistency imposes that the different body
parts do not interpenetrate. As the estimation is based on a search on the
configuration space it would be desirable to a priori remove those regions
that correspond to collisions between parts. Unfortunately it is in general
not possible to define these forbidden regions in closed form so they could
be rejected immediately during the sample phase. The result is that in the
particle filter framework, it is possible that configurations proposed by some
particles correspond to such impossible configurations, thus exploring regions
in the configuration space that are of no interest. To avoid these situations,
we use a binary cost function, that is not related to observations but only
based on a collision detection mechanism. The likelihood function for a state
x is pcoll(x) ∝ exp(−λcofco) with:

fco(x) =

{

0 No collision
1 In collision

This function, although being discontinuous for some points of the configura-
tion space and constant for all the remaining, is still usable in a Dirac particle
filter context. The advantage of its use is twofold, first it avoids the deriva-
tion of the filter to zones of no interest, and second it avoids wasting time
in performing the measuring step for unacceptable hypothesis as they can be
immediately rejected.

Implementation: In its actual form, the system tracks the parameters of
a model containing eight degrees of freedom, i.e. four per arm. We assume
therefore that the torso is coarsely fronto-parallel with respect to the camera
while the position of the shoulders are deduced from the position/scale of the
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Figure 6. From top-left to bottom right: snapshots of tracking sequence (pointing
gestures)

face given by the face detector of the previous step. In addition to the projected
contours of the model, a set of colour patches are distributed on the surface
model and their possible occlusions are managed during the tracking process.
Our approach is different from the traditional marker-based ones because we
do not use artificial but natural colour or texture-based markers e.g. the two
hands and ROIs on the clothes.

Regarding the particle filtering framework, we opt for the Auxiliary Par-
ticle Filter scheme [9], which allows to use some low cost measure or a priori

knowledge to guide the particle placement, therefore concentrating them on
the regions of interest of the state space. The associated measurement strategy
is as follows: (1) particles are firstly located in good places of the configura-
tion space according to rough correspondences between model patches and
image features, and (2), on a second stage, particles’ weights are fine-tuned
by adding edges cues, motion information, etc.

The above described approach has been implemented and evaluated over
monocular images sequences acquired in various situations. Figure 6 shows
snapshots of the results obtained from one of the evaluation sequences. The
right sub-figures show the model projections superimposed to the original
images for the mean state E[xi

k] at frame k, while the left ones show its corre-
sponding estimated configuration. The following examples combine measures
that use the contours, three patches per arm, and the previously described
geometric constraints.

Other experiments, available at the authors’ webpage, demonstrate the
tracker’s ability to follow a wide range of two arms movements despite very
strong variability in shape and appearance due to both arm muscles and
clothing deformations.

Due to the efficiency of the importance density and the relatively low
dimensionality of the state-space, tracking results are achieved with a reason-
ably small number of particles i.e. Ns = 400 particles. In our unoptimised
implementation, a PentiumIV-3GHz requires about 1s per frame to process
the two arm tracking, most of the time being spent in observation function.
To compare, classic systems take a few seconds per frame to process a single
arm tracking.
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6 Conclusion

This article presents the development of a set of visual functions that aim to
fulfil a basic step of interaction functionalities. Face detection and recognition
based on Haar functions and eigenfaces enable the recognition of the tutor
users. A modified Haar-based classifier was created to detect open hands in
images. User tracking to make the robot follow the user is implemented us-
ing a particle filter that uses colour distribution over rectangular patches as
target features. The colour distributions that correspond to each patch are
updated on-line to the changes produced by the targets motion or illumina-
tion changes. Finally a method capable of tracking the configuration of the
human arms from a single camera video flow is presented. Future works in-
clude the optimisation of the 3D tracker so it can be used in realtime video
flows, enabling it to be used interactively to communicate with the robot.
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