
Dispersion Algorithms for Swarm Robots
Navigation

Abstract—A robot swarm is a multi-robot system which con-
sists of a large number of small and relatively simple individual
units. This approach is based on the idea that relatively simple
and primitive individual behaviours will produce a set of complex
emergent swarm behaviours. These systems are scalable by using
local inter-robot communications. Most of the applications for
robot swarms must perform a previous important task: disperse
efficiently the robots in an unknown environment. This document
summarizes several swarm robotic platforms developed in the last
years and several algorithms from different authors to achieve
the dispersion goal.

I. INTRODUCTION

The most desirable applications for robots are jobs that are
dangerous, dirty, or dull. Many of these jobs lend themselves to
being performed by groups of robots working together rather
than by single robots working alone. Some tasks can achieve
efficiency gains as a direct function of the number of robots
applied. The use of a large number of robots increase the
fault tolerance and leads to the synergy of an emergent be-
haviour. Other applications can benefit even more, as radically
different techniques can be employed to solve a problem with
ten thousand robots than with ten. As robots become more
common in everyday’s life, the shift to multirobot systems will
become the rule, rather than the exception. Swarm robotics is
a relatively new field that focuses on controlling these large-
scale homogeneous multirobot systems in such applications
like vacuum cleaning, earthquake rescues or exploration and
mapping of new areas.

The algorithms designed for these systems are based on the
idea that complex behaviours can emerge from simple local
interactions between agents. Robotic swarms have several
advantages over other more complex individual robots and are
the results of using many robots instead of just one [1]:

• Robot swarms are able to cover a larger area than an
individual robot.

• Swarm robots are fault tolerant because the algorithms
designed for them don’t need robots to depend on one
another.

• Robot swarms usually increase their effectiveness with
the number of members.

A great variety of algorithms have been implemented to be
run on robotic swarms. All of them produce different emergent
behaviour but its main features include [1]:

• Simple and elegant. The robot controller that dictates the
behaviour of the individual robots is very simple and is
usually represented as a state machine with few states
and edges.

• Scalable. Algorithms are designed for any number of
robots and scale well as new robots are added to the
swarm.

• Decentralized. The robots in a swarm are autonomous
and do not follow any exterior commands. Although a
member of a swarm can be influenced by the behaviour
of another, the choice is under its own accord. Being
scalable and decentralized are often related features.

• Usage of local interactions. Local interactions are used
over broadcasting messages in the majority of these
algorithms. The scalability of the system depends greatly
on this concept.

The main goal in almost every application for robotic
swarms typically involves two different phases [2]:

1) The swarm fills the environment as quickly as possible.
2) The robots perform some computational tasks.
This document presents some algorithms designed to per-

form the dispersion task included in the first phase previously
presented. These algorithms have different approaches and
strategies to solve the dispersion problem and describe the
path to follow in this context.

This paper is structured as follows: in the second section a
brief overview of several robotic swarm platforms is presented,
in the third section some algorithms with different disperssion
approaches are described, and finally, obtained conclusions
from this work are presented in the fourth section.

II. ROBOT SWARM SYSTEMS

Multiple swarm robotics platforms have been designed in
the last years to develop different types of algorithms and
behaviours. In this section a description of three robotic
swarms is presented which are different in terms of structure,
motion, sensing and comunication design. This is a brief
sample of the great variety of architectures for robot swarms
developed all around the world.

A. i-Robot

This platform is the world’s largest swarm, with over one
hundred individual robots at the Massachusetts Institute of
Technology, and has been used for a multitude of projects
and experiments. The goal of the project is to develop dis-
tributed algorithms for robotic swarms composed of hundreds
of individual robots [3].

An individual i-Robot unit packs a comprehensive sensor
suite, a high-performance 32-bit microprocessor, in the form of
a 5 inch cube (see figure 1). Each robot uses the ISIS infrared



Fig. 1. Individual i-Robot unit

communication system that provides obstacle detection, local-
ization and communications at 125 kbps [4]. Robots that are
close to each other are able to communicate and to determine
the locations of each other. Messages are dispersed through the
entire network topology dynamically formed by all the robots
in the swarm using a multihop protocol. Most communication
protocols and basic obstacle avoidance are handled by the
underlying system so researchers can use this platform to focus
on emergent behaviour.

B. Swarm-bots

Swarm-bots was a project completed on 2005 and was
sponsored by the Future and Emerging Technologies program
of the European Community aimed to study new approaches
to the design and implementation of self-organizing and self-
assembling artifacts [5][6]. A swarm-bot consists in the phys-
ical construction of at least one s-bot. Each s-bot is a fully
autonomous mobile robot capable of performing basic tasks
such as autonomous navigation, perception of its surrounding
environment and grasping of objects. A s-bot is also able to
communicate with other individual units and physically join
either rigidly or flexibly to them, thus forming a swarm-bot.
The s-bot design is shown in figure 2a and a configuration to
pass a large gap is shown in figure 2b.

(a) (b)

Fig. 2. (a) S-bot design. (b) Swarm-bot configuration to pass a large gap.

Its main features are its compact size (116 mm in diameter
of the main body and 100 mm in height), all-terrain mobility,
rigid and flexible arms, several sensors as accelerometers,

force, temperature, torque and light sensors and an omnidi-
rectional camera.

S-bots don’t use the typical radio communication system,
they communicate with each other in a very simple way in
terms of the colours of their light sensors. The s-bot behaviour
is related with the measures of colours and distance to other
s-bots obtained from the images captured by its camera.

C. Scout

In [7] a set of small robotic systems called scouts is
presented. As shown in figure 3, the scout is a cylindrical
robot 11.5 cm in length and 4 cm in diameter that can
use their wheels to travel on two ways. The scouts can
transmit video from a small camera to a remote source for
processing and can also transmit and receive digital commands
over a separate communications link that uses an ad hoc
packetized communications protocol. By interleaving packets
destined for different robots with different and unique ID,
multiple scouts can be controlled simultaneously. Actuator,
sensor and communication controls are handled by two on-
board microprocessors.

Fig. 3. Scout robot

III. DISPERSION ALGORITHMS FOR ROBOT SWARMS

In this section different strategies to perform the dispersion
task for a robot swarm are presented.

A. Rapid dispersion

Hsiang et al. present in [2] several algorithms for dispersing
robot swarms in an unknown environment, where the primitive
objective is to minimize the time to fill the entire region. An
arbitrary region is formed of connected pixels, where a subset
of these pixels is formed by doors, which serve as sources
of incoming robots (see figure 4). Robots move discretely on
the grid of pixels, so if a time t a robot occupies a pixel (i,j)
of region R and a neighbouring, for example, (i+1,j) of R
is unoccupied at time t, then the robot may take a step and
occupy that pixel at time t+1. Obviously, two robots can’t
move to the same pixel, so a priority among the four possible
directions is established.

Two algorithms are given for a single door case based on
leader-follow strategies adapted from depth-first and bread-
first search to apply to robot swarms.



1) Depth-First Leader-Follower (DFLF): This strategy is
inspired by depth-first search in a graph. At any given time t
there is exactly one leader r which is on a pixel and is looking
for a frontier pixel, one that has never been occupied by a
robot, and selects it as its next destination. If the leader has
no frontier pixel next to it, it stops and tells its successor to
assume the leadership. If the leader has no successors, then the
algorithm halts. Any robot that is a follower (not the leader)
simply follows its predecessor. It’s important to note that at
any point in time there’s only one leader and that once a robot
stops, it never moves again.

Fig. 4. Region where special door pixels are shown in grey

2) Breadth-First Leader-Follower (BFLF): This algorithm
is based on the breadth-first leader-follower alternative strategy
and, while still being optimal in terms of makespan just like
the previous one, often has advantages in terms of other
metrics of performance as total travel of robots, maximum
travel of any robot, total relative distance, etc.

In this strategy there can be multiple leaders and it has
been introduced a new robot state. As before, a robot can be
in a moving state or a stopped state, but now the robot can
pause temporarily and wait to be able to move. This is called
a waiting state. Once again, if the robot stops, it never moves
again.

Initially there’s only one leader r, the robot at the door.
When another robot gets at the door, it chooses to follow
the previous robot that left the door. A leader always tries
to go to a neighbouring frontier pixel, but makes sure it does
not stray far from its successor. If there are no neighbouring
frontier pixels, the leader waits for its successor to arrive.
When the immediate successor catches up, the leader stops
and its immediate successor becomes the new leader. If the
leader r at pixel u has several neighbour frontier pixels, it
chooses any one of them and heads to it. If there are frontier
pixels adjacent to u remaining, the follower r’ of r will choose
one of them as it heading when it arrives at u. If there remains
a frontier pixel adjacent to u, then r’‘s follower r” chooses this
pixel as its heading when it arrives at u. This way, r’ and r”
becomes relabeled leader and pixel u becomes a branching
point.

This strategy tries to create as many paths as possible at
all times, so the visited pixels form a tree that guides the
directions of the robots. At branching points, robots alternate

the direction they travel so the flow gets balanced.
Both strategies achieve the goal of filling the entire region in

a quick manner, but only if there are enough robots available.

B. Direct Dispersion

In [8] algorithms for dispersing large swarm of robots
into an enclosed space are presented where only inter-robot
communication and processing is used. This algorithms have
been successfully tested on the i-Robot Swarm platform.

The Directed Dispersion algorithm tries to spread the robots
throughout the enclosed region in a quick and uniform manner,
while keeping each robot connected to the communication net-
work. The behaviour is accomplished by using two algorithms
that alternate running on the swarm: Disperse Uniformly and
Frontier Guided Dispersion. The Disperse Uniformly algo-
rithm spreads robots evenly, using boundary conditions to
limit the dispersion. The Frontier Guided Dispersion algorithm
spreads robots towards unexplored areas and is designed to
perform well both in open and constricted environments.

1) Disperse Uniformly: Physical walls and a maximum
dispersion distance between any two robots of rsafe are used
as boundary conditions to prevent the swarm from spreading
too thin and fracturing into multiple disconnected components.
rsafe is the maximum distance that provides reliable position-
ing when using the ISIS inter-robot infrared communication
system installed on every i-Robot.

Each robot moves away from the vector sum of the positions
of their c closest neighbors. The magnitude of the velocity
vector that is given to the motor controller of each robot is
such that it will tend to expand the swarm to fill the space
available in the region. Once this space is occupied, robots
will position themselves so the energy is minimum.

2) Frontier Guided Dispersion: This algorithm guides the
swarm towards new areas using the robots that are on the
frontier of explored space. Robots must identify themselves
as occupying one of three positions in the network using
several thresholds in their signal measurements: wall, frontier
or interior. Once they know their positions, the frontier robots
source a gradient message so a tree is formed such that it
guides the swarm towards the frontier robots. To avoid that
newly discovered frontiers pull robots away from previously
explored areas, robots move away from children in the frontier
tree. Thus, a reliable network is built because robots only
move if they are in contact with at least two children in the
frontier tree. Progress of distant frontiers is slowed as interior
robots disperse towards the frontiers because the gradients of
the messages are based on hop count.

Directed Dispersion combines the two previous algorithms,
so if there are any frontier gradients in the network, the swarm
runs the Frontier Guided Dispersion algorithm. Otherwise,
it runs Disperse Uniformly to equalize inter-robot spacing.
Disperse Uniformly tends to push robots into open spaces and
tight constrictions, which can cause new frontiers to form. This
activates the Frontier Guided Dispersion behavior on the rest
of the swarm, which causes a directed dispersion towards the
frontiers.



These algorithms also achieve the dispersion goal of filling
an area in a quick manner as the rapid dispersion approach,
but the number of robots used can be reduced thanks to the
communication network involved.

C. Dispersion algorithms for Scouts

In [9] four reactive dispersion algorithms for the scout
platform described in the second section are presented. These
methods are close to those in [2], but now it is assumed that
there are not enough robots to cover the entire region and to
guarantee that every robot can remain within sensor range of
other robots. Furthermore, these algorithms are constrained not
to require explicit communications, they only use their sensors
to communicate implicitly by observing the environment. This
type of communication is very used in swarm robotics and is
called stigmergy [10].

Fig. 5. Left: Follow Wall algorithm. Center: Seek Open algorithm. Right:
Fiducial Movement algorithm. (a) A robot detects another one behind in and
turns so the detected robot will be immediatly behind. (b) The robot has
positioned the detected robot behind it so continues straight forward.

1) Random Walk: A robot using the Random Walk al-
gorithm can be in random forward movement or obstacles
avoidance states. In random forward movement, the robot
moves forward with a small random turn factor changed at
random intervals, ensuring the robot doesn’t end up running
in circles. Once the robot detects an obstacle, it enters the ob-
stacle avoidance state, where the robot turns around a random
amount and goes back to the random forward movement state.

2) Follow Wall: A robot running this algorithm will search
for an obstacle (presumably a wall) and follow it indefinitely.
The robot can be in four different states: find wall, align to
wall, follow wall and navigate corner (see figure 5 left). If the
robot loses the obstacle in any of the three non-find-wall states,
it will go back to the initial find wall state and search for a
new one to follow. The major problem is that it is assumed that
every obstacle is a wall. Thus, when many robots are together,
they will tend to perceive each other as walls and try to align
themselves to each other, which is not an effective strategy to
spread the robots throughout the environment.

3) Seek Open: The goal of the Seek Open algorithm is to
motivate the robots to disperse as quickly as possible. The
average obstacle vector is calculated for all the obstacles in
sensor range such that its magnitude is large for objects close
to the robot and small for objects far away. After this vector
is computed, the goal of the robot is to move in the opposite
direction of the average obstacle vector. This allows the robot

not to run near to walls and disperse from other robots (see
figure 5 center).

4) Fiducial Movement: This algorithm needs a fidual device
in every robot to find beacons that are attached to all of
them. This allows a given robot to know the polar coordinates
of other robots respect to its own position. Whenever a
robot detects another robot within sensor range, it adjusts
its movement so that it is moving away from the detected
robot. When no robots are in sensor range, a robot simply
moves according to the random walk algorithm. If at any time
a robot encounters a physical obstacle such as a wall, the
obstacle avoidance technique takes precedence over whatever
movement algorithm the robot is currently executing (see
figure 5 right).

The reactive characteristic of these algorithms is an advan-
tage in terms of speed, but it could lead the swarm to fill the
region in a not uniform manner.

IV. CONCLUSION

Swarm robotics is a novel approach to the coordination of
large numbers of robots designed such that a desired collective
behaviour emerges from individual ones. This paper describes
briefly three swarm robotics platform developed in the last
years and three different approaches to achieve the typical
dispersion task of this kind of systems. Rapid Dispersion
seems a quick manner to fill a entire region but only if there are
enough individual robots available. Direct Dispersion achieves
the same goal for a fewer number of robots and guarantees
they’re all connected to the communications network. The
dispersion algorithms for Scouts are reactive, robots don’t
need information from each other, so they’re faster, but could
disperse themselves in a not uniform way.

REFERENCES

[1] D. Miner: Swarm Robotics Algorithms: A Survey. Technical Report,
University of Maryland, 2007.

[2] T. R. Hsiang, E. Arkin, M. A. Bender, S. Fekete, and J. Mitchell: Al-
gorithms for rapidly dispersing robot swarms in unknown environments.
In Proc. 5th Workshop on Algorithmic Foundations of Robotics (WAFR),
2002.

[3] iRobot Corporation official website. http://www.irobot.com
[4] M. Schwager, J. McLurkin and D. Rus, Distributed Coverage Control with

Sensory Feedback for Networked Robots. In Proceedings of Robotics:
Science and Systems, 2006.

[5] F. Mondada, L. M. Gambardella, D. Floreano, S. Nolfi, J.-L. Deneubourg,
and M. Dorigo: SWARM-BOTS: Physical interactions in collective
robotics. IEEE Robot. Autom. Mag., vol. 12, no. 2, pp. 21−28, 2005.

[6] G. Pettinaro, I. Kwee, L. Gambardella, F. Mondada, D. Floreano, S. Nolfi,
J. Deneubourg, and M. Dorigo: Swarm Robotics: A Different Approach
to Service Robotics. In Proceedings of the 33rd ISR (International
Symposium on Robotics), October 7-11, 2002.

[7] P. E. Rybski, S. A. Stoeter, M. Gini, D. F. Hougen, and N. Pa-
panikolopoulos: Performance of a distributed robotic system using shared
communications channels. IEEE Trans. on Robotics and Automation,
22(5):713−727, October 2002.

[8] J. McLurkin and J. Smith: Distributed Algorithms for Dispersion in
Indoor Environments using a Swarm of Autonomous Mobile Robots.
7th International Symposium on Distributed Autonomous Robotic Systems
(DARS), 2004.

[9] R. Morlok and M. Gini: Dispersing robots in an unknown environment.
In Proceedings of the 7th International Symposium on Distributed Au-
tonomous Robotic Systems, Toulouse, France, June 2004, Springer-Verlag.

[10] E. Bonabeau, M. Dorigo, and G. Theraulaz: Swarm Intelligence: From
Natural to Artificial Systems, Oxford University Press, 1999.


