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1 Introduction

A social robot can be defined as a robot which is capable to not only perform
some predefined tasks but also to interact with its environment in general
and with humans in particular [1]. To do that a social robot must have a
visual system with a biological-plausible attentional mechanism. That is, an
attentional mechanism which attempts at imitating the behavior of the hu-
man attentional mechanism. This attentional mechanism should determine
which regions or objects from the robot visual input are important for the
robot and should to be more detailed studied. Using this information, the
visual system of the social robot should be capable of solve some specific
problems as: identify faces, measure head and hands poses, capture human
motion, recognize gestures and read facial expressions to emulate human so-
cial perception. Therefore, the robot could identify who the human is, what
the human is doing and how the human is doing it.

A first step to identify a human in the scene is to determine skin colour
regions. These are the regions where a face or hand is likely located. Skin-
color segmentation approaches can be grouped into two basic categories [2]:
physically-based approaches [3, 4] and statistical approaches. Statistical ap-
proaches can be subdivided further into: parametric approaches [5, 6, 7, 8]
and nonparametric approaches [9, 10]. Parametric statistical approaches rep-
resent the skin-color distribution in parametric form, such as a Gaussian
model [5, 6, 7] or a mixture of Gaussian model [8]. The key advantages
of parametric models are: i) low space complexity and ii) relatively small
training sets are required. The major difficulty in the case of Mixture of
Gaussians is order selection. Nonparametric statistical approaches [9], [10]
use histograms to represent density in color space. A major advantage of
the histogram representation is that the probability density function can be
evaluated trivially regardless of the complexity of the underlying distribu-
tion. A major drawback is that the histogram approach requires a consider-
able amount of training data. Physically-based approaches [3, 4] made direct
use of a physical model of skin reflectance. The reflectance model is used to
discount a known, time-varying illuminant to obtain color constancy. Seg-
mentation tends to be more accurate due to the algorithm’s use of strong
prior knowledge: camera and illumination parameters, as well as initial im-
age segmentation. However, such information may not be readily available
in analysis of everyday image sequences.

In this report, a parametric skin colour segmentation approach is pre-
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sented. This approach is based on the work of Terrillon et al. [11, 12]
which uses a skin chrominance model built over the TSL (Tint-Saturation-
Luminance) colour space. It assumes that the chrominance of Caucasian
skin can be modelled by an unimodal elliptical Gaussian joint probability
density function. Once the model is built, the Mahalanobis metric is used to
discriminate between skin and non-skin pixels.

2 Chrominance model of Caucasian human

skin

2.1 Colour space

The first step to build a chrominance model is to select an adequate colour
space. This space must provide robustness to illumination variation. That
is achieved if the colour space efficiently separates the chrominance from the
luminance. Then, only the chrominance component is used. Besides, the
chosen colour space should provide a confined and easily to model skin color
distribution. Therefore, the efficiency of the skin colour segmentation de-
pends on the selected colour space, because the colour distribution of human
skin depends on the colour space.

Terrillon and Akamatsu in [12] present an analysis of the performance of
nine different colour spaces used in skin colour segmentation. They study the
distribution of the skin colour in normalized r-g, CIE-xyz, TSL, CIE-DSH,
HSI, YIQ, YES, CIE-L*u*v* and CIE-L*a*b* spaces. The CIE-DSH and HSI
are discarded because the skin colour distribution is not confined. Terrillon
and Akamatsu also propose a skin colour chrominance model for Asian and
Caucasian skin which uses an unimodal elliptical Gaussian joint probability
density function. In YIQ, ES, CIE-L*u*v* and CIE-L*a*b*, although the
skin colour is confined it can not be modelled by a single model, so they
discard these spaces too. The TSL and normalized r-g yield the best fit
to this model. In their experiments, the best colour space to segment skin
colour regions and detect faces is the TSL colour space.

In our work, we have implemented the skin colour chrominance model
proposed by Terrillon [11, 12] using the TSL colour space. This space is
obtained from the RGB space using the following transformation:

S =

√
9

5
∗ (r′2 + g′2) (1)
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L = 0.299R + 0.587G + 0.114B (3)

where

r
′
= (r − 1

3
) (4)

g
′
= (g − 1

3
) (5)

r = (R − R

R + G + B
) (6)

g = (G − G

R + G + B
) (7)

T is the tint, S the saturation and L the luminance, normalized in the range
[0,...,1.0].

2.2 Skin chrominance model building

The first step to build the skin colour model is to determine the portion of the
TS colour space where the Caucasian skin colour is confined. The TS colour
space is the TSL space where the luminance component has been removed.
To do that, we have used a set of 108 indoor and outdoor colour images with
faces and hands. These images have been manually segmented, extracting the
skin colour regions of faces and hands from the background and computing a
set of 108 skin colour masks. Fig.1 shows ten of the training images and their
corresponding masks used in the skin chrominance model building process.
The set of masks is used to compute a cumulative histogram with the TS
values of the skin colour pixels. Fig.2 shows this histogram. It must be
noted as the distribution of the skin colour is confined. We assume that
the distribution shown in Fig.2 can be modelled by an unimodal elliptical
Gaussian joint probability density function given by

p[X̄(i, j)/Ws] = (2π)−1| ¯̄Cs

−1
2 | exp [

−λ2
s(i, j)

2
] (8)
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Figure 1: Training images and masks.

where ¯X(i, j) = [T̄ (i, j)S̄(i, j)]T represents the random measured values of
tint and saturation of a pixel with coordinates (i, j) in an image. Ws is the
class describing the skin colour. ¯̄Cs is the covariance matrix of the skin colour
distribution:

Cs =

[
σ2

Ts
σTSs

σTSs σ2
Ss

]
(9)

and λs(i, j) is the Mahalanobis distance from vector x̄(i, j) to the mean vec-
tor m̄s = [mTsmSs ]

T obtained from the skin colour distribution. Equation
(8) means that the probability of a pixel to be a skin colour pixel depends on
the covariance matrix of the skin colour distribution as well as on the Ma-
halanobis distance between the pixel colour and the mean colour of the skin
distribution. Therefore, the larger λs(i, j), the lower the probability that the
pixel be a skin pixel.The Mahalanobis distance is given by

[λs(i, j)]
2 = [X̄(i, j) − m̄s]

T ¯̄Cs

−1
[X̄(i, j) − m̄s] (10)
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Figure 2: a) Histogram of the skin colour distribution; b) top view of the
histogram.

Equation (10) defines elliptical surfaces in chrominance space of scale λ(i, j),
centered about m̄s and whose principal axes are determined by ¯̄Cs.

Equations (8) and (10) show that the skin colour chrominance model
is whole described by m̄s and ¯̄Cs. The values obtained for the skin colour
distribution shown in Fig.2 were the following:

m̄s = [ 149.0228 23.0944 ] (11)

¯̄Cs =

[
0.0058 0.0009
0.0009 0.0094

]
(12)

3 Skin colour segmentation

Once the parameters of the model have been computed from the training
masks, the model can be used to segment skin colour regions from real images.
The process to segment an input image is the following:

1. The RGB input image is transformed in a TSL image applying equa-
tions (1), (2) and (3) to all pixels.

2. λ(i, j)2 is computed for each pixel of the input image using equation
(10). Each value is compared with a threshold λ2

T .
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Figure 3: a) Masks; b) skin detection results λ2
T = 10.0.

3. A value of 1 is assigned to pixel (i, j) if λ(i, j)2 ≤ λ2
T . Otherwise, pixel

(i, j) is set to 0.

The output of the skin colour segmentation algorithm is a binary image where
the skin colour pixels are set to 1 and non-skin colour pixels are set to 0.

The threshold λ2
T depends on the used camera and can be computed

studying the portion of false positives and false negatives [12] in the segmen-
tation. In our case, we have studied the Mahalanobis distance in the pixels
of a set of 18 background images without skin regions. Using a histogram of
distances, we compute the distance value in which the percentage of pixels
classified as skin (false positives) is equal to a desired value. This distance
is chosen as threshold. With this method a range of false positives between
10% and 28% produces λ2

T ∈ [6..10].
Figs.3.b and 4.b show some results obtained with λ2

T = 10.0, using the
training images as inputs. While the masks are correctly segmented (Fig.3.b),
a lot of incorrectly classified pixels appear in the non-skin images (Fig.4.b).
These pixels are in grey coloured regions. The grey colour is character-
ized only for its Saturation value in the TSL space. Specifically, grey pixels
have a small saturation value while the tint and luminance can be a random
value. Therefore, some gray values are included in the computed skin colour
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Figure 4: a) Non-skin images; b) skin detection results λ2
T = 10.0; c) Skin

detection results λ2
T = 10.0 ST = 10.

distribution (Fig. 2). In order to solve this problem a new threshold ST

(saturation threshold) has been included in the model. Only pixels with a
saturation value higher than ST are included in the model. Fig.4.c shows the
new results obtained with λ2

T = 10.0 and ST = 10.
Using the two previous thresholds λ2

T and ST , the algorithm still has
some problems with black regions, as it is shown in Fig. 5.b. Black colour
is characterized in TSL space with its low L value. Black regions can have
random values in T and S. As the model only takes into account the T and
S values of colours, then it is possible to classify a black pixel like a skin
coloured pixel. To avoid that, another threshold (LT ) is used in the model.
Only pixels with L > LT are included in the model. Fig.5.c shows the new
results obtained with λ2

T = 10.0, ST = 10 and LT = 80.
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Figure 5: a) Non-skin images; b) skin detection results λ2
T = 10.0 ST = 10;

c) skin detection results λ2
T = 10.0 ST = 10 LT = 80.
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4 Experimental results

In this section, a set of experimental results is shown. These results have
been obtained using two different cameras: the camera used to take the
training images and a different camera in order to illustrate the variation of
the thresholds.

The thresholds used with the camera employed in the capture of the
training images have been: λ2

T = 10.0, ST = 10 and LT = 80. Fig. 6 shows
some results obtained with this camera.

Fig.7 shows the results obtained with another camera. The thresholds
used in this case have been: λ2

T = 40.0, ST = 20 and LT = 60.
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Figure 6: a-c-e) Original images; b-d-f) skin detection results λ2
T = 10.0

ST = 10 LT = 80.
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Figure 7: a-c) Original images; b-d) skin detection results λ2
T = 40.0 ST = 20

LT = 60.
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1 Introduction

A first step for any face processing system (i.e. face recognition or facial ex-
pressions identification systems) is to detect if one or more faces are presented
in the image and to compute their locations. Given an arbitrary image, the
goal of a face detection system is to determine whether or not there are faces
in the image and, if present, return the image location and area of each face
[1].

Face detection is a challenging task because of the existence of factors
which can modify the appearance of a face in the image. Some of these
factors are:

• Presence of structural components in the face as beard, mustache, hat
or glasses.

• Pose and orientation.

• Facial expression.

• Variations in the illuminance.

• Oclussions.

• Noise.

Face detection methods can be classified into four categories [1]:

• Knowledge-based methods [2]: this category includes any rule-based
face detection approach. The rules, derived from the researcher’s knowl-
edge of human faces, usually describe the features of a face and their
relationships. For example: a face often contains two eyes that are sym-
metric to each other, a nose and a mouth. The relationships between
them are their relative distances and positions. The most important
problem of this type of methods is the difficulty to extract the adequate
human knowledge and represent it using rules.

• Feature-based methods: these methods try to find invariant features of
faces. The most used features are eyebrows, eyes, nose, mouth and hair-
line [3]. A problem with these features is that they can be corrupted due
to illumination, noise and occlusions. Other used features are texture
[4] and skin colour [5].
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• Template matching methods: a standard pattern of a face, or some
patterns of face features as nose, eyes and mouth, is stored as template.
This template can be a fixed template [6], which has problems with
variations in scale, pose and shape, or a deformable template [7].

• Appearance-based methods [8]: in these methods, models are learned
from a set of training images which should capture the representative
variability of facial appearance. In general, appearance-based methods
rely on techniques from statistical analysis and machine learning to find
the relevant characteristics of face and non-face images. The learned
characteristics are in the form of distribution models or discriminant
functions.

In this report, a feature-based method for face detection is proposed. This
method is based on the previous work of Viola and Jones [9], which uses
Haar-like features to detect faces. Haar-like features encode the existence
of oriented contrasts in the input image. The Viola and Jones’s method has
proven to be very fast (15 frames per second in a conventional desktop). Two
of the main characteristics of the Viola and Jone’s method, that are exploited
in the work proposed in this report, are the following:

• The use of a set of features which are reminiscent of Haar Basis func-
tions. In order to compute these features very quickly at many scales,
they introduce a new image representation called integral image. It can
be computed from an image using a few operations per pixel. Once
computed, any of the Haar-like features can be calculated at any scale
or location in constant time.

• A simple an efficient classifier is used to select a small number of im-
portant features from the huge amount of potential ones. This classifier
is built using the AdaBoost learning algorithm [10].

Although the proposed algorithm is based on the key ideas of [9], a main
contribution is presented. While Viola and Jones compute the Haar-like
features over the whole image, we propose to previously detect skin colour
regions in the input image and then to compute the Haar-like features only
in the set of skin colour regions where a face is probably located. In order to
select these potential ”face regions” a set of test is computed over each skin
region.
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Figure 1: a) ”Skin image”; b) eroded and dilated image.

Therefore, the face detection method proposed in this report has two
main steps:

1. Potential face regions of the input image are detected. This step can
be subdivided into two stages: first, the skin colour pixels of the input
image are detected using the algorithm explained in deliverable 1.1,
and grouped into connected regions. Second, a set of structural tests is
applied to the previously detected skin regions in order to discard the
regions that clearly are not a face.

2. The remaining regions are classified as face or not face using the method
proposed by Viola and Jones [9].

2 Potential face regions extraction

The first step of the proposed face detection system is to compute the skin
colour pixels of the input image. The used skin colour detection algorithm is
the previously presented in deliverable 1.1. Once the skin colour pixels are
detected, the resulting ”skin image” is eroded and dilated in order to remove
small noisy regions (Fig. 1). Then, the connected skin colour regions are
computed using a region labelling algorithm. In a first step of this algorithm,
the input image is covered row by row. The 8-vicinity of each skin colour
pixel is studied. If some of the eight neighbours of a skin colour pixel has
been previously labelled, the skin colour pixel is labelled with the same label.
It is labelled with a new label in other case. If there are two or more different
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Figure 2: a) Eroded and dilated image; b) labelled image.

labels in the vicinity of a skin colour pixel, these two labels are stored in a list
as equivalent labels. In a second step, the list of equivalent labels is studied
in order to assign only one label to the same connected region. In Fig. 2
each extracted connected region is marked with a different colour.

Once the skin pixels of the skin image are grouped into connected regions,
those whose dimensions are clearly not the dimensions of a face are discarded.
In order to do that, four different tests are applied to the connected skin
regions:

1. Test of minimum and maximum area: the skin regions whose area is
less than the 1% of the total area of the input image are discarded.
The skin regions whose area is higher than the 80% of the total area of
the input image are discarded.

2. Test of elongated regions: each skin region whose bounding box height
is less than the 40% of its bounding box width is discarded. Each skin
region whose bounding box width is less than the 40% of its bounding
box height is discarded.

3. Test of sparse regions: each region whose area is less than the 50% of
the area of its bounding box is discarded.

4. Test of proportion: if the height/width proportion of a region is higher
than 1.6, the height of the region is reduced until (height/width) < 1.6.

All the previously used thresholds have been empirically obtained and they
can be changed in order to control the flexibility of the tests.
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Figure 3: a) Labelled images; b) remaining regions after the tests.

Fig. 3 shows the regions obtained after applying the tests to the labelled
images.

Once the previously explained set of regions is discarded, the remaining
regions are used to build gray-scale images with fixed size. These images will
be inputs of the classification algorithm employed to discriminate between
face and non-face regions. Each of these images is built as follows:

1. A square bounding box around the region is used to select a subimage
from the original colour image which previously has been converted in
a grey scale image.

2. The previously extracted subimage is interpolated using a bicubic in-
terpolation algorithm to achieve an image of 24x24 pixels (Fig. 4).
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Figure 4: Examples of interpolated images which will be inputs of the clas-
sifier.

3 Classification algorithm

The 24x24 images extracted in the previous section are the inputs of a classi-
fier which is built using the Adaboost learning algorithm [10]. This algorithm
selects a small set of critical face features from a large set of features. The
used features are the Haar-like features. This classifier has been proposed by
Viola and Jones [9].

3.1 Features

The used features are the Haar-like features proposed by Papageorgiou et al.
[11]. We use four kinds of features (Fig. 5):

• Two-rectangle feature: It is the difference between the sum of the pixels
within two rectangular regions. The regions have the same size and
shape and are horizontally or vertically adjacent. It is subdivided in:

– vertical two-rectangle: two rectangles vertically adjacent.

– horizontal two-rectangle: two rectangles horizontally adjacent.
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Figure 5: a) Vertical two-rectangle; b) horizontal two-rectangle; c) three-
rectangle; d) four-rectangle.

• Three-rectangle feature: it computes the sum within two outside rect-
angles subtracted from the sum in a center rectangle.

• Four-rectangle feature: it computes the difference between diagonal
pairs of rectangles.

Fig.5 shows the used features. The sum of the pixels which are within the
white rectangles are subtracted from the sum of the pixels in the grey rect-
angles.

3.2 Integral image

In order to compute the previously explained features very quickly, Viola
and Jones [9] propose to use the integral image. The integral image is an
intermediate representation for the image which at location (x, y) contains
the sum of the pixels above and to the left of (x, y) inclusive. It can be
represented as:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (1)

being ii(x, y) the integral image and i(x, y) the original image. In our case
the original images are the set of subimages computed in the skin regions
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Figure 6: Memory accesses needed to compute: a) a two-rectangle feature;
b) a three-rectangle feature; c) a four-rectangle feature. For example the
two-rectangle feature is computed as: B−A = (5−6−3+4)− (3−4−1+2)

extraction step. The integral image can be computed in only one pass using
equations (2) and (3).

s(x, y) = s(x, y − 1) + i(x, y) (2)

ii(x, y) = ii(x − 1, y) + s(x, y) (3)

where s(x, y) is the cumulative row sum.
Using the integral image it is possible to compute the sum of the pixels

within any image rectangle with only four memory accesses [9]. Therefore,
a two-rectangle feature is computed with six memory accesses. A three-
rectangle feature needs 8 memory accesses and nine memory accesses are
needed to compute a four-rectangle feature (Fig. 6).

3.3 Classifier learning process: Adaboost algorithm

The Adaboost algorithm is used to select a small set of critical features (T )
from the huge set of previously computed features. Besides, it is used to
train the classifier. The Adaboost learning algorithm consists of T weak
classifiers (one for each feature) which are combined to form a strong clas-
sifier. Each weak classifier is designed to select the single rectangle feature
which best separates the positive and negative examples. For each feature,
the weak learning process determines the optimal threshold classification
function, such that the minimum number of training images are misclassi-
fied. Therefore, a weak classifier (h(x, f, p, θ)) consists of a feature (f), a
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threshold (θ) and a polarity (p) indicating the direction of the inequality:

h(x, f, p, θ) =

{
1 if pf(x) < pθ
0 otherwise

(4)

The process to select the optimum set of weak classifiers from the whole set
of possible weak classifiers is the following [9]:

• Given example images (x1, y1), ..., (xn, yn) where yi = 0 for negative
(non-face) examples and yi = 1 positive (face) ones.

• Initialize weights w1,i = 1
2m

, 1
2l

for yi = 0, 1 respectively, where m and l
are the number of negatives and positives respectively.

• For t = 1, ..., T :

1. Normalize the weights, wt,i,norm =
wt,i∑n

j=1 wt,j

2. Select the best weak classifier with respect the weighted error

εt = min
f,p,θ

∑
i

wi|h(xi, f, p, θ) − yi| (5)

This process is more detailed explained below.

3. Define hi(x) = h(x, ft, pt, θt) where ft,pt and θt are the minimizers
of εt.

4. Update the weights wt+1,i = wt,iβ
1−ei
t , where ei = 0, 1 if the image

xi is classified correctly or incorrectly respectively. βt = εt

1−εt
.

5. Compute the weights α of the final strong classifier αt = log 1
βt

.

The final strong classifier is a lineal combination of the previously selected
weak classifiers. It is represented using equation (6).

C(x) =

{
1

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 otherwise
(6)

C(x) = 1 when the input image is classified as face and 0 in another case.
The process to select the best weak classifier in the iteration t is the

following:

• For i = 1, ..., K (being K the total number of potential features f):
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1. Initialize εt,i,min = 1.

2. Compute and sort the feature values for each example image fi(x1), ..., fi(xN).

3. For j = 1, ..., N :

(a) Set θj = fi(xj).

(b) Compute εt,i,θj
= min{S+ + (T− − S−), S− + (T+ − S+)},

where T+ is the total sum of positive example weights, T−

is the total sum of negative example weights, S+ is the sum
of positive weights below the current example in the sorted
list, and S− is the sum of negative weights below the current
example in the sorted list.

(c) If εt,i,θj
< εt,i,min ⇒ εt,i,min = εt,i,θj

, θt,i = θj and pt = pj.

• Select the feature fi with less εt,i,min

4 Results

In order to perform the training of the classifier, we have used a set of N =
200 positive (face) and negative (non-face) images. Specifically, 100 positive
and 100 negative images have been used.

The number of computed potential features has been K = 108, 241. Al-
though the total number of features is 134,736 in a 24x24 subimage, we have
discarded some of them because their contribution to the training process
is not important. Specifically, the discarded rectangle features have been
the following: 2-pixels width vertical two-rectangle, 2-pixels height horizon-
tal two-rectangle, 3-pixels width three-rectangle and 2-pixels width 2-pixels
height four-rectangle. The number of training iterations and final features
has been T = 150. This number has been empirically obtained. A compar-
ison using different numbers of final features is presented at the end of this
section. The computational time of the training process has been 5 hours
in a 2,4 GHz Pentium IV PC. It must be noted that the training process is
performed only once.

The features obtained in the training process are used to detect the faces
presented in real images. The detection process is the following:

1. Detection of the skin colour regions.

2. Erosion and dilatation of the ”skin image”.
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Table 1: Percentages of rightly classified faces, false positives and false neg-
atives

Indoor Images Outdoor images
Rightly classified 86% 82%
False negatives 14%. 18%
False positives 10%. 8%

3. Extraction of the connected skin regions.

4. Computation of the tests to discard the regions which are not clearly
a face.

5. Generation of the 24x24 subimages using the skin regions which have
passed the tests.

6. Classification of the previous images using the strong classifier com-
puted in the training process.

Fig. 7 and Fig. 8 show the results of the face detection process in some
indoor and outdoor images, respectively. Table 1 shows some percentages
obtained using a set of 50 images. The face detection process has proven to
be very fast: 0,033 seconds (30 fps) with 192x256 images and 0,043 seconds
(24 fps) with 256x320 images using a 2,4 GHz Pentium IV PC.

In order to study the behaviour of the classifier using different sets of
features, we have repeated the training of the Adaboost algorithm with dif-
ferent values of T : T = 1, 10, 50, 100, 150, 200. The rest of parameters are
N = 200 and K = 108, 241. Figs. 9 and 10 show some of these results. In
the case of only one feature, it should be appreciated that some faces are
detected. The problem is the high number of false positives. The higher the
number of features, the lower the number of false positives, until T = 150.
The results obtained with T = 200 are worse than the results obtained with
T = 150 because the accuracy of the classifier does not increase indefinitely
with the number of features. There is an optimum number of iterations for
the inputs used in the training process. In that case, the optimum T value
is 150.
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Figure 7: Indoor result images
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Figure 8: Outdoor result images
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Figure 9: Face detection results; a) original images; b) T=1; c) T=10; d)
T=50.
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Figure 10: Face detection results; a) original images; b) T=100; c) T=150;
d) T=200.
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1 Introduction

If the perceptual system of a robot is based on vision, interaction will involve
visual human motion analysis. The ability to recognize humans and their ac-
tivities by vision is key for a machine to interact intelligently and effortlessly
with a human-inhabited environment [1]. Several surveys on visual analysis
of human movement have already presented a general framework to tackle
this problem [2], [1], [3] and [4]. Aggarwal and Cai point out in their survey
[2] that one (of three) mayor areas related to the interpretation of human mo-
tion is motion analysis of the human body structure involving human body
parts. The general framework consists of: 1. Feature Extraction, 2. Feature
Correspondence and 3. High Level Processing.

The architecture we present relates to this framework in that we call the
low level processing concerned with Feature Extraction - Observation Level
see fig. 1. This level accomplishes tasks like detecting the presence of human
using face detection, detecting important (with reference to interaction) body
parts like hands and face using skin color detection and recognizing the person
using eigenobjects. This report is concerned with the latter task.

Figure 1: architecture of the system

Presuming a face has been detected using the method described in De-
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liberable 1.2 we proceed by identifying the person. For the face recognition
we choose a method using PCA and eigen objects. Face recognition systems
based on eigenfaces methods has been introduced by Turk et al. [9]. Methods
based on eigenvectors are used to extract low-dimensional subspaces which
tend to simplify tasks such as classification. The Karhunen- Loeve Trans-
form (KLT) and Principal Components Analysis (PCA) are the eigenvector
based techniques used for dimensionality reduction and feature extraction in
automatic face recognition. Face recognition using eigen objects and the im-
plementation using Intel Opencv library are shown in the following section.

2 Recognition Database

The face recognition system is based on eigenspace decompositions for face
representation and modeling. The learning method estimates the complete
probability distribution of the faces appearance using an eigenvector decom-
position of the image space. The face density is decomposed into two com-
ponents: the density in the principal subspace (containing the traditionally-
defined principal components) and its orthogonal complement (which is usu-
ally discarded in standard PCA).

Given a training set of WH images, it is possible to form a training set
of vectors xT . The basis functions for the Karhunen Loeve Transform (KLT)
are obtained by solving the eigenvalue problem:

∆ = ΦT ΣΦ (1)

where Σ is the covariance matrix, Φ is the eigenvector matrix of Σ and ∆
is the corresponding diagonal matrix of eigenvalues λi. In PCA, a partial
KLT is performed to identify the largest eigenvalues eigenvectors and obtain
a principal component feature vector y = ΦT

M x̃, where x̃ = x−x is the mean
normalised image vector and ΦM is a submatrix of Φ containing the principal
eigenvectors([8]).

3 Implementation

The system architecture consists of three main modules: learning, face de-
tection and face recognition.



Face Recognition 4

3.1 Learning phase

During the (offline) learning process our system creates the eigenspace for
a certain set of people. In our case we used a set of seven people (enguer,
luis, elo, carlos, vinay, mannequin and joerg). From 50 captured images per
person we use a certain number to build the database. The image capture is
performed automatically using our face detection module (based on Haar-like
features [5, 6, 7, 8]). The images are then resized to 32*32 pixels gray scale
images. In the next step we compute the orthonormal eigen basis and the
average image for each person using the function cvCalcEigenObjects from
Opencv [10](see figure 2).

Figure 2: learning process

3.2 Recognition phase

Once this eigenspace is calculated the system is able to recognize the face
of a person during the tracking process in real time. Again, we start by
detecting the face within the image using our face detection module, resizing
and converting it. We then calculate all decomposition coefficients (function
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cvEigenDecomposite) for the extracted image using the eigen objects for each
person in the database. In the next step we calculate the projection of the
image from the eigen objects of the person and the coefficients calculated
before (function cvEigenProjection). As a result we get one projection image
for each person (see figure 3).

We finally simply compare which projected image match the best with
the original extracted image. The confidence value is directly derived from a
template matching function. In our case the two images are compared using
the Opencv function cvMatchTemplate and choosing the squared difference
normalized method :

R =

∑
x,y (Img2(x, y) − Img1(x, y))2√∑

x,y Img2(x, y)2 ∗ ∑
x,y Img1(x, y)2

(2)

The function gives a value between 0 and 1 (where 0 is a perfect match). We
calculate the confidence value by conf = (1−match)∗100. The person with
the highest confidence value is defined as the recognized person. We only
keep matching values under a certain threshold (here, we use 0.04 equivalent
to 96%).

Figure 3: projections created from an extracted face, with the percentage of
recognition

4 Discussion and Results

The amount of time needed to process the eigenfaces for recognition was
between 2 and 3 ms per person in the database using our system (AMD64
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confidence values
wrong matches 70%to94%
right matches 90%to100%

Table 1: approximation of possible values return by the recognition system

3000+ processor with Suse 9.1 operating system). We were able to recognize
several people at the same time like shown in figure 4.

Figure 4: several person recognition

4.1 Confidence Value

Table 1 shows the confidence values for wrong matches (other people from
the database) and the correct match. The confidence values shown in table
1 are reached by using similar background and illumination conditions of
the environment for the learning phase as well as for the recognition phase.
The same holds true for camera settings like shutter etc. In other cases the
algorithm might still work but the confidence values will be lower due to the
used a correlation method for matching. In this case, the threshold needs to
be adapted.

4.2 Training Data

A question that arises during the training phase is that of how many training
samples (images) do we need and what should they contain (in terms of facial
orientation and expression). In the following we present results concerning
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the size and the content of the database. First we compared some results
using a big database (50 images) and a small database (10 images) for a image
sequence. The sequence contains several facial expressions and orientations
(the person to be recognize is enguer). In figure 5, the first chart represents

Figure 5: Comparison between two kind of databases for different facial
expressions and orientations

the recognition using 6 people and 50 images but with similar orientation
and expression (most are frontal faces). The second chart uses the same
sequence but with a 10 images sized database and hand-picked images od
different orientation and expression. The first chart shows better results for
frontal faces. We can observe in both cases some downward peaks when
the head changes its orientation or when the person produces different facial
expressions. Finally looking at the threshold (red dotted line), we see that
overall confidence value of the right match (enguer) is lower in the second
chart.

The figure 6 represent the same sequence as before but using a big
database (50 images) with diverse facial expressions and orientations. Again,
the results for the probability value of the right match (enguer) are lower than
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Figure 6: huge database composed of all kind of facials expressions and
orientations

in chart one of figure 5, but some facial expressions are better recognized (e.g
opened mouth at the end).
The results show that a database of 50 images with diverse orientations
and facial expressions produces a more stable recognition though the overall
probability values might be lower.

5 Conclusion

This report has shown the implementation of a recognition program for hu-
man motions using eigenfaces (PCA) from the Intel OpenCv library. We
presented results concerning the face recognition, showing the feasibility of
our approach.
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name number date
carlos 100 2005-07-13
elo 76 2005-08-10

enguer 53 2005-08-10
jorg 96 2005-08-09
luiz 76 2005-07-13

mankin 100 2005-08-09
vinay 100 2005-07-13

Table 2: Full Image Database

name number date
elo 10 2005-08-10

enguer 10 2005-08-10
jorg 10 2005-08-09

vinay 10 2005-08-10

Table 3: Small Image Database

A Recognition Database

The full database consists of 53 - 100 images of seven people.
The small database consists of 10 handpicked images from the full database

of four people. The images have a high diversity in terms of facial orientation
and expression.
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