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1 Introduction

A social robot is a robot which is capable of communicate and interact with
humans and other social robots. This interaction implies that the social
robot must simultaneously perceive a great variety of natural social cues
from visual and auditory channels, and to deliver social signals. This social
behaviour can be evaluated in a more easy way if it is imposed that a socially
interactive robot senses and interprets the same phenomena that humans
observe. Besides, social robots must proficiently interpret human activity
and behaviour.
If most human-oriented perception is based on passive sensing (artificial

vision and auditory), the vision system is the responsible of solving the prob-
lems of identifying faces, measuring head and hands poses, capturing human
motion, recognizing gestures and reading facial expressions to emulate hu-
man social perception. This information permits that the robot be able to
identify who the human is, what the human is doing, how the human is do-
ing it and even to imitate the human motion. Thus, the robot could treat
the human as an individual, understand his/her surface behaviour, and po-
tentially infer something about his/her internal states (e.g., the intent or the
emotive state). On the other hand, these human-related tasks must be run in
parallel with object-related ones, which permit the robot to recognize objects
extracted from the environment. In order to achieve these goals, the visual
perception system of the social robot should imitate the ability of natural
vision systems to select the most salient information from the broad visual
input. The use of attention to reduce the amount of input data has two main
advantages: i) the computational load of the whole system is reduced, and
ii) distracting information is suppressed. An attention mechanism is central
to a system requiring a selection of the relevant information on which the
system activities are based.
Probably one of the most influential theoretical models of visual attention

is the spotlight metaphor [1], by which many concrete computational models
have been inspired [2][3][4]. These approaches are related with the feature

integration theory, a biologically plausible theory proposed to explain human
visual search strategies [5]. All are organized into two main stages. First, in a
preattentive task-independent stage, a number of parallel channels compute
image features. The extracted features are integrated into a single saliency
map which codes the saliency of each image region. The most salient regions
are selected from this map. Second, in an attentive task-dependent stage, the
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spotlight is moved to each salient region to analyze it in a sequential process.
Analyzed regions are included in an inhibition map to avoid movement of
the spotlight to an already visited region. Thus, while the second stage must
be redefined for different systems, the preattentive stage is general for any
application.
Although these models have good performance in static environments,

they cannot in principle handle dynamic environments due to their impossi-
bility to take into account the motion and the occlusions of the objects in the
scene. In order to solve this problem, an attentional control mechanism must
integrate depth and motion information to be able to track moving objects
[6]. Thus, Maki et al. [7] propose an attention mechanism which incorpo-
rates depth and motion as features for the computation of saliency. Baker
and Mertsching [6] also compute depth as a feature, but use dynamic neural
fields to track the most salient regions of the saliency map in a semiattentive
stage. The method is reported to take 30 seconds per frame, which makes
its application to real-time, interactive systems unfeasible.
In this report a general purpose attentional mechanism based on the

feature integration theory is presented. It is capable of handling dynamic en-
vironments, and detecting human faces or hands in a fast way. The proposed
system integrates bottom-up (data-driven) and top-down (model-driven) pro-
cessing. The bottom-up component determines and selects salient image re-
gions by computing a number of different features. The top-down component
makes use of object templates to filter out data and only track significant
objects. Fig. 1.a shows the overview of the proposed architecture. The
presented work is centered in the task-independent stage of a feature inte-
gration approach. Our method is related to the recent proposal of Backer
and Mertsching [6] in several aspects. The first is the use of a preattentive
stage in which parallel features are computed and integrated into a saliency
map. However, in contrast with this and other attentional systems, we have
introduced the skin colour as input feature in order to detect human faces or
hands as possible regions of interest. Thus, in this work, skin colour is first
detected using a chrominance distribution model [8] and then integrated as
input feature in a saliency map. Other similarity is that this preattentive
stage is followed by a semiattentive stage where a tracking process is per-
formed. But, while Backer and Mertsching’s approach performs the tracking
over the saliency map by using dynamics neural fields, our method tracks the
most salient regions over the input image with a hierarchical approach based
on the Bounded Irregular Pyramid [9]. The output regions of the tracking
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Figure 1: a) Overview of the proposed attentional mechanism and b) overview
of the tracking algorithm

algorithm are used to implement the inhibition of return and avoid revisit
or ignore objects. The main disadvantage of using dynamic neural fields for
controlling behavior is the high computational cost for simulating the field
dynamics by numerical methods. The Bounded Irregular Pyramid approach
allows real time tracking of a non-rigid object without a previous learning of
different objects views [10].

2 Preattentive stage

The proposed attentional mechanism uses a number of features computed
from the available input image in order to determine how interesting a region
is in relation to others. These features are independent of the task and
they allow to extract the most interesting regions of the image. Besides,
they allow to distinguish locations where a human may be placed. The
chosen features are colour and intensity contrast, disparity and skin colour.
Attractivity maps are computed from these features, containing high values
for interesting regions and lower values for other regions in a range of [0...255].
The integration of these feature maps into a single saliency map allows to
determine what regions of the input image are the most interesting. Other
features can be easily added without changes in the following steps.
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2.1 Computation of early features

2.1.1 Feature: colour contrast

Colour is employed for all attentional models because it can distinguish im-
portant aspects of the objects. The first step to compute colour contrast is
to choose an adequate colour space. We have selected the HSV colour space
due to its intuitive representation and the facility to separate the chromi-
nance from the luminance information. Thus, the RGB colour information
is firstly transformed into the HSV colour space. Second, the input image is
segmented using a Bounded Irregular Pyramid (BIP) [9] in order to obtain
homogeneous colour regions. And finally, in contrast with other methods
which only compute the colour contrast for a set of colours [6], the proposed
algorithm computes a colour contrast value for each homogeneous colour re-
gion of the input image independently of its colour. The colour contrast of a
region i is calculated as the mean colour gradient MCGi along its boundary
to the neighbour regions:

MCGi =
Si

PLi

∑

j∈Ni

plij ∗ d(< Ci >,< Cj >) (1)

being PLi the length of the perimeter of the region i, Ni the set of regions
which are neighbours of i, plij the length of the perimeter of the region i

in contact with the region j, d(< Ci >,< Cj >) the Euclidean distance
between the colour mean values < C > of the regions i and j and Si the
mean saturation value of the region i. Fig. 2.b shows the colour contrast
saliency map associated to Fig. 2.a. It must be noted that the use of Si in
the MCG avoids that colour regions with low saturation (grey regions) obtain
a higher value of colour contrast than pure colour regions. The problem is
that white, black and pure grey regions are totally suppressed. To take into
account these regions, the intensity contrast is computed.

2.1.2 Feature: intensity contrast

This feature map is computed in a similar way to the previous one. The
intensity contrast of a region i is the mean intensity gradient MIGi along its
boundary to the neighbour regions:

MIGi =
1

PLi

∑

j∈Ni

plij ∗ d(< Ii >,< Ij >) (2)



Attention Mechanism 6

Figure 2: Colour and intensity contrast computation: a) Left input image;
b) colour contrast saliency map; c) intensity contrast saliency map and d)
disparity map

being < Ii > the mean intensity value of the region i. Fig. 2.c shows the
intensity contrast saliency map associated to Fig. 2.a.

2.1.3 Feature: skin colour

Skin colour is an important tool to distinguish locations in which a human
is probably located. In order to segment skin colour regions from the input
image, the skin colour segmentation method proposed in Deliverable 1.1 of
VISOR project has been used. This method is briefly described below:
The first step to identify skin colour regions in an image is to compute

an accurate skin chrominance model using a colour space. The used skin
chrominance model has been built over the TSL colour space and it is based
on the method proposed by Terrillon and Akamatsu [8]. Thus, the skin
colour is modelled in the TSL colour space as an unimodal elliptical Gaussian
joint probability density function computed on a set of 120 training images.
This function is represented by its covariance matrix Cs and its mean vector
ms. The Mahalanobis metric is used to determine a threshold value Ts that
efficiently discriminates between human skin and other objects.
Once the chrominance model has been established, the steps to segment

skin regions from an image are the following: first, the RGB input image is
transformed into a TSL image. Second, the Mahalanobis distance from each
pixel (i, j) to the mean vector is computed. If this distance is less than Ts

then the pixel (i, j) of the skin feature map is set to 255. In any other case,
it is set to 0. Fig. 3.b shows the skin colour saliency map associated to Fig.
3.a.
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Figure 3: Skin colour computation: a) Left input image; and b) skin colour
map

2.1.4 Feature: disparity

In our system, relative depth information is obtained from a dense disparity
map which is scaled in the range [0 ... 255], being 255 the disparity value
of the closest region. Thus, closed regions are considered more important.
As disparity estimator we employ the zero-mean normalized cross-correlation
measure. It is implemented using the box filtering technique. This allows to
achieve fast computation speed [11].
Each computed zero-mean cross-correlation value is stored in a 3D dis-

parity space with size MxNxD, where MxN is the image size and D the
maximum disparity range. The disparity map is found in this space by
obtaining the global 3D maximum surface which is computed using the two-
stage dynamic programming technique proposed by Sun [11]. Fig. 2.d shows
the disparity map associated to Fig. 2.a.

2.2 Saliency map computation

Similarly to other models [4][6], the saliency map is computed by combining
the feature maps into a single representation. In our case, all the feature
maps are normalized to the same dynamic range, in order to eliminate cross-
modality amplitude differences due to dissimilar feature extraction mecha-
nisms. A simple normalized summation has been used as feature combination
strategy because, although this is the worst strategy when there are a big
number of feature maps [12], it has been demonstrated that its performance
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is good in systems with a small number of feature maps. Fig. 4.b shows the
saliency map associated to Fig. 4.a.

3 Semiattentive stage

Once the saliency map is calculated, it is segmented in order to obtain regions
with homogeneous saliency. Among the set of obtained regions, only big
enough regions with a high saliency value are taken into account. In our
experiments, a region has been considered as a salient one if its size is greater
than the 0.2% of the input image size and its saliency is greater than the 60%
of the saliency map maximum value. These threshold have been empirically
obtained and work correctly in most cases.
A general problem in attentional mechanisms is to avoid revisiting or ig-

noring salient objects of the image when the system is working in a dynamic
environment with moving objects. To solve this problem, it is necessary to
include in the system a mechanism to avoid extracting the same objects in dif-
ferent frames, although they will be in different positions in the images. The
attentional mechanism should be object-oriented and not region-oriented.
The way to solve the problem of revisiting or ignoring objects is called “inhi-
bition of return”. The proposed attentional mechanism implements the inhi-
bition of return by including a tracking process in the semiattentive stage to
track the objects extracted from the scene. This tracking allows to know the
position in the current frame of the previously extracted objects. It prevents
the attentional mechanism from wrongly identify them as new objects.

Figure 4: Saliency map computation and targets selection: a) Left input
image; b) saliency map; and c) selected targets
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The tracking algorithm is based on the Bounded Irregular Pyramid (BIP)
[9]. It permits to track non-rigid objects without a previous learning of dif-
ferent object views in real time. To do that, the method uses weighted tem-
plates which follow up the viewpoint and appearance changes of the objects
to track. The templates and the targets are represented using BIPs.
The most salient regions obtained by segmentation of the saliency map

are directly related to homogeneous colour regions of the segmented left in-
put image. These homogeneous colour regions are the targets to track. Fig.
4.c shows the selected targets associated to the saliency map in Fig. 4.b. It
must be noted that targets are not necessary associated with homogeneous
saliency regions, but with homogeneous colour ones. This mechanism pro-
vides better object candidates to the tracking stage. Once the targets are
choosen, the algorithm extracts its hierarchical representations. Each hierar-
chical structure is the first template M (0)

r and its spatial position is the first
region of interest ROI (0)

r , where r ∈ [1...N ] and N is the number of salient
regions to track.
Although in the following steps the general implementation of the tracking

algorithm to work with colour objects is showed, it must be noted that when
the target to track is a skin colour region the approach is slightly different.
In the case of general colour objects the similarity criterium between nodes
to build the BIP and to perform the tracking is to have similar colour. In
the case of skin colour regions the employed similarity criterium is to be a
skin or a non-skin node using the skin segmentation method explained in
Section 2.1.3. The main steps of the proposed tracking algorithm (Fig. 1.b)
are explained in the following subsections.

3.1 Over-segmentation

The first step is to represent hierarchically the regions of interest ROI (t)
r ,

∀r ∈ [1...N ], into the same hierarchical structure using the Bounded Irregular
Pyramid. The BIP is a 4 to 1 structure where each level is generated by
reducing the resolution of the previous one by a factor of four. Thus, a
node of a new level l is generated by averaging the colour of the four nodes
immediately below at level l-1. Contrary to other 4 to 1 structures, the BIP
is an irregular structure in which not all sets of 4 nodes of a level originate a
new node in the upper level. Thus, a new node (or valid node) is generated
only when the four nodes below have similar colour. The resulting structure
is an uncomplete regular pyramid. Each pyramidal node n is identified by
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(i, j, l) where l represents the level and (i, j) are the (x, y) coordinates within
the level. To build the different levels of the pyramid, each node has five
parameters associated:

• Homogeneity, Hom(i, j, l). Hom(i, j, l) is set to 1 if the four nodes
immediately underneath have colour difference values below a threshold
TC and their homogeneity values are equal to 1. Otherwise, it is set to
0. In the base or level 0, Hom(i, j, 0) = 1 if (i, j) ∈ ROI (t)

r . Otherwise,
Hom(i, j, 0) = 0.

• Chromatic phasor, S 6 H(i, j, l). The chromatic phasor is composed of
the saturation (S) and the hue (H) values of the HSV colour space.
If the cell is homogeneous, S 6 H(i, j, l) is equal to the average of the
chromatic phasors of the four cells immediately underneath. If the cell
is not homogeneous, S 6 H(i, j, l) is set to a null value.

• Intensity, V (i, j, l). If the cell is homogeneous, V (i, j, l) is equal to the
average of the intensity values associated to the four nodes immediately
underneath. Otherwise, it is set to a null value.

• Area, A(i, j, l). It is equal to the sum of the areas of the four nodes
immediately underneath.

• Parent link, (X,Y )(i,j,l). If Hom(i, j, l) is equal to 1, the values of the
parent link of the four cells immediately underneath are set to (i, j).
Otherwise, these four parent links are set to a null value.

It must be noted that only nodes presenting a homogeneity value equal to 1
are valid nodes. Each valid node is linked to a homogeneous region at the
base.
Each ROI(t)

r depends on the target position in the previous frame T (t−1)
r ,

being updated as it is described in subsection 3.5. The hierarchical structure
can be represented in each level as:

ROI(t)(l) =
⋃

ij

p(t)(i, j, l) (3)

being p a node of the bounded irregular pyramid built over the ROI.
It must be noted that, once the structure is generated, valid nodes without

parent are regarded as roots of trees defined by their links to lower level
nodes. Thus, they perform an over-segmentation of the regions of interest
by defining classes at the base of the structure.
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3.2 Template Matching

Each template M (t)
r and target T (t)

r in every frame t are represented using
BIP:

M (t)
r (l) =

⋃

ij

m(t)
r (i, j, l) (4)

T (t)
r (l) =

⋃

ij

q(t)
r (i, j, l) (5)

Fig. 5 presents an example of template representation using a 4-level
pyramid. The base of the pyramid (level 0) contains 64x64 pixels. Fig. 5
shows how pixels at level l are arranged into sets of 2x2 elements to create a
node at level l+1. It must be noted that nodes related to non homogeneous
sets (white nodes in the figure) are removed from the structure and they are
not taken into account in the tracking procedure.
In this step, the algorithm looks for the targets T (t)

r using a hierarchical
template matching approach. Starting in the highest level, each template
M (t)

r (l) is placed and shifted in its ROI (t)
r (l) until the target is found or until

ROI(t)
r (l) is wholy covered. If a ROI (t)

r (l) was wholy covered and the target
was not found, this target localization process would continue in the level
below. When all the targets are searched in a level, the process continues
in the level below looking for the targets which have not been previously
found. The displacement of each template can be represented as d(t)

rk
=

(d(t)
rk
(i), d(t)

rk
(j)) in the range [d(t)

r0
d(t)
rf
]. d(t)

rf
is the displacement that situates the

template in the position where the target is placed in the current frame. The
algorithm chooses as initial displacement in the current frame d(t)

r0
= d(t−1)

rf
. In

order to localize the target and obtain d(t)
rf
, the overlap O

(t)

d
(t)
rk

between M (t)
r (l)

Figure 5: Template hierarchical representation
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and ROI(t)
r (l) in each template displacement k is calculated as:

O
(t)

d
(t)
rk

=
∑

ij∈ξ

w(t)
r (mr(i, j, l

(t)
w )) (6)

being w(t)
r (mr(i, j, l)) a weight associated to m(t)

r (i, j, l) in the current frame
t, as explained in subsection 3.4. ξ is the subset of pixels that satisfy the
following condition:

g(r, s) < TC (7)

with
r = f(m(t)

r (i, j, l
(t)
w ), a(t))

s = p(t)(i+ d(t)
rk
(i), j + d(t)

rk
(j), l(t)w )

being g(r, s) the colour distance between r and s and TC the colour thresh-
old employed in the pyramid generation. f(m(t)

r (i, j, l
(t)
w ), a(t)) is a coordinate

transformation of m(t)
r (i, j, l

(t)
w ) that establishes the right correspondence be-

tween m(t)
r (i, j, l

(t)
w ) and p(t)(i + d(t)

rk
(i), j + d(t)

rk
(j), l(t)w ). a(t) denotes the pa-

rameter vector of the transformation, which is specific for the current frame.
Eq. (7) is satisfied when a match occurs.
We consider that a target has been found in a position if the overlap in

that position is higher than 70%. All the ROI pixels that match with pixels
of the template are marked as pixels of the target in the whole structure
ROI(t)

r . Thus, the hierarchical representation of the target T
(t)
r is obtained.

3.3 Target Refinement

To achieve a more accurate appearance of the targets, each T (t)
r is rearranged

level by level following a top-down scheme. From each node of ROI (t)
r that

is not in T (t)
r a search is performed for all valid neighbour nodes in a 3x3

vicinity which belong to the target and have a similar colour to it. Among
the set of candidates, the studied node is linked to the most similar one to
it.

3.4 Updating Templates

The templates are updated in each frame in order to follow up varying appear-
ances. To do that, we associate a probability value or weight (w(t)

r (mr(i, j, l)))
with each valid node of the template model. This value places more impor-
tance to more recent data and permits to forget older data in a linear and
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smooth manner. Each template is updated as shown in equations (8) and
(9):

m(t+1)
r (i, j, l) =

{

m(t)
r (i, j, l) if no match

f−1(q(t)
r (i, j, l), a

(t)) if match
(8)

w(t+1)
r (mr(i, j, l)) =

{

w(t)
r (mr(i, j, l))− α if no match
1 if match

(9)

where the forgetting constant, α, is a predefined coefficient that belongs to
the interval [0, 1].

3.5 Updating Regions Of Interest

Once the targets have been found in the current frame t, each new ROI (t+1)
r

is obtained. First, the level 0 of each new region of interest is computed.
ROI t+1

r (0) is made of the pixels of the next frame p(t+1)(i, j, l) which are
included in the bounding box of T (t)

r (0) plus the pixels included in an extra
border ε of the bounding box. This extra border ensures that the target in
the next frame will be placed in the new ROI. This step is performed at
the end of the tracking process t. Second, at the beginning of the tracking
process t + 1, the new regions of interest are oversegmented as it has been
previously explained in subsection 3.1.

4 Results

The above described attentional scheme has been examined through exper-
iments which include humans and objects in the scene. Fig. 6.a shows a
sample image sequence seen by a stationary binocular camera head. Every
10th frame is shown. All salient regions are marked by black and white
bounding boxes in the input frames. It must be noted that the activity fol-
lows the objects closely, mainly because the tracker works with the segmented
input image instead of working with the saliency image. This approach has
two main advantages: i) the regions of the segmented left image are more
stable across time than the saliency maps regions, and ii) the regions of the
segmented image represent real objects closer than saliency map regions.
Furthermore, the tracking algorithm prevents the related object templates
from being corrupted by occlusions. Backer and Mertsching [6] propose to
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solve the occlusion problem with the inclusion of depth information. How-
ever, depth estimation is normally corrupted by noise and is often coarsely
calculated in order to bound the computational complexity. In our approach,
the tracker is capable of handling scale changes, object deformations, partial
occlusions and changes of illumination. Fig. 6.b presents the saliency maps
after inhibiting the regions which have been tracked in each frame. This in-
hibition avoids that the region extraction process extracts regions that have
been already extracted in previous frames. In frame 1, the yellow box and
the red extinguisher have been detected. The yellow box is tracked over the
whole sequence because its saliency remains high. However, the saliency of
the extinguisher goes down between frames 21 and 30 and therefore it is not
tracked from frame 30 to the end of the sequence. In frame 11, a hand with
a green cone is detected in the image. In frame 51, a red box is introduced in
the scene. This box is not detected until frame 91, when it becomes located
nearer to the cameras than the other objects. In frame 81, an occlusion of
the green cone is correctly handled by the tracking algorithm, which is ca-
pable to recover the object before frame 91. It can also be observed how the
mechanism follows appearance and view point changes of the salient objects.
The proposed method runs at 5 frames per second with 128x128 24-bit

colour images, being faster than Backer’s proposal [6] which is reported to
take 30 seconds to process one frame. Beobot [4] runs a saliency mechanism at
30 frames per second with 160x120 images but, while we use a 850 MHz PC,
Beobot uses two 1.26 GHz dual-CPU computer boards. Besides, Beobot does
not include depth or movement information of the objects in its attentional
mechanism.
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