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1 Introduction

The analysis of human actions by a computer is gaining more and more
interest. An important part of this task is to register the motion, a process
known as human motion capture. This process can be formally defined as
[1]:

The process of capturing the large scale body movements, of a
subject, at some resolution.

In this work, a real-time human motion capture system based on computer
vision is presented. The goal of this work is to extract the upper body
movements of a person without using any beacons or markers, using only two
stereo cameras. The use of markers is normally intrusive, it often necessitates
the use of expensive specialized hardware and it can only be used on footage
taken specially for that purpose [2]. Several markerless approaches to human
motion capture have been recently proposed [2, 3]. All these approaches
present the same problem: they take several seconds to process one frame.

The proposed human motion capture approach [4, 5, 6] is based on a
novel hierarchical tracking system [7]. Since such a system is unstable and
can only acquire partial information because of self-occlusions and depth am-
biguity, a model-based pose estimation method based on inverse kinematics
has been also employed. The resulting system can estimate upper body hu-
man postures with limited perceptual cues, such as centroid coordinates and
disparity of head and hands.

The key idea behind this system is the assumption that in order to track
the global upper human body motion, it is not necessary to capture with
precision the motion of all its joints. Particularly, in this work only the
movement of the head and hands of the human are tracked, because they
are the most significant items involved in the human-to-human interaction
processes. These are modelled by weighted templates that are updated and
tracked at each frame using the previously mentioned hierarchical tracking
approach. The pose of the joints is then extracted through the use of a
kinematic model of the human to track. It is also assumed that the human
motion speed is bounded and that the pose of the different items to track
is related to its last detected pose. By assuming this important constraints,
the proposed system can estimate upper-body human motion at 25 frames
per second.
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Figure 1: Overview of the proposed human motion capture system

An overview of the proposed system is shown in Fig. 1. The system has
two main modules: a vision module and a joint angle extraction module.
The vision module extracts the 3D coordinates of the head and hands of the
human using the attentional mechanism previously explained in Deliverable
2 [8] which includes the hierarchical tracking algorithm. These (X, Y, Z)
coordinates are used by the model-based joint angle extraction module to
compute the pose of the upper-body joints by means of a kinematic model
and a inverse kinematics algorithm.

2 Vision module

The main stage of the vision module is the attentional mechanism previously
explained in Deliverable 2 [8] which has been slightly modified as shown
below. The output of this attentional mechanism are the 2D coordinates of
the head and the hands and their disparities. This information is combined
using the calibration parameters of the cameras to obtain the 3D coordinates
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of the head and hands. These 3D coordinates are the outputs of the vision
module.

2.1 Attentional mechanism

The general purpose attentional mechanism proposed in Deliverable 2 has
been slightly modified in this human motion capture system in order to
extract as relevant information the position of the head and hands of the
human whose movements are being tracked. In order to do that, the skin
colour and the disparity are the only used low level features. The disparity
computation method has been changed. In this work the Small Vision System
(SVS) provided by Videre Design (www.videredesign.com) has been used to
extract a more accurate disparity map. SVS is a set of library functions
which implement the stereo algorithms. The disparity map is computed
using a correlation-based algorithm.

The obtained disparity map is processed in order to extract the silhou-
ette of the person. To do that, the face detection algorithm presented in
Deliverable 1 [9] is used to determine the position of the human face in the
input image. The mean value of the disparity of the localized face is used
as threshold to reduce the number of disparity values in the disparity map.
That is, only a certain number of disparities over this reference and below it
are taken into account, the rest of values are removed from the map. This
filtering is based in the fact that the maximum distance between the head
and one hand is determined by the length of a stretched arm. We consider
this length not to be superior to one meter. Thus, all disparities over this
threshold are discarded. The result of this first filtering process is shown in
Fig. 2.c.

Once this new map is obtained, the silhouette of the person is extracted
using connected components (Fig. 2.d). The hands of the person are de-
termined as the biggest skin colour regions located inside of the silhouette.
These hands and the face are the extracted salient regions which are tracked
by the hierarchical tracking algorithm included in the attentional mechanism.
Therefore, the attentional mechanism is able to compute in each frame the
2D position of the head and the hands and their disparity values, as shown
in Fig. 2.d.
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Figure 2: a) Left image of an input stereo pair; b) Disparity map; c) Relevant
disparities (grey); and d) Extracted silhouette (grey), tracked face (green)
and tracked hands (white).
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3 Model-based pose generator

Our approach is exclusively based on the information obtained from the
stereo vision system of the robot imitator. Thus, it is related to other ex-
periments, e.g. the mimicking experiments show by Sauser and Billard [10],
but in our case external color marks are not employed. As explained above,
the information extracted for each frame is restricted to 3D positions of head
and hands. Wren and Petland already developed a system to recover human
motion from these limited cues, using physical constraints and probabilistic
influences [11]. They also use a model to help in the tracking process by
projecting 3D virtual blobs into 2D images taken with the stereo pair and
improve pose estimation in a recursive scheme. The resulting system allows
to track human upper-body movements at 30 fps, but it has to be manu-
ally initialized and requires several computers working on parallel due to its
complexity.

Our system also uses a kinematic human model to translate 3D head
and hands positions to a correct pose. But we base the translation in a
fast analytic inverse kinematics algorithm running over a model that avoids
incorrect poses. This model filters tracked movements and provides, in real-
time, a set of joint angles that conforms a valid human pose and preserves
perceived 3D positions.

3.1 Model

We have restricted ourselves to capture upper body motion. Thus, the ge-
ometric model contains parts that represent hips, head, torso, arms and
forearms of the human to be tracked. Each of these parts is represented by
a fixed mesh of few triangles, as depicted in Fig. 3. This representation
has the advantage of allowing fast computation of collisions between parts of
the model, which will help in preventing the model from adopting erroneous
poses due to tracking errors.

Each mesh is rigidly attached to a coordinate frame, and the set of coor-
dinate frames is organized hierarchically in a tree. The root of the tree is the
coordinate frame attached to the hips, and represents the global translation
and orientation of the model. Each subsequent vertex in the tree represents
the three-dimensional rigid transformation between the vertex and its parent.
This representation is normally called a skeleton or kinematic chain [12] (Fig.
3). Each vertex, together with its corresponding body part attached is called



Human motion capture 7

Figure 3: Illustration of the human upper-body kinematic model

a bone. Each bone is allowed to rotate –but not translate– with respect to
its parent around one or more axes. Thus, at a particular time instant t, the
pose of the skeleton can be described by Φ(t) = (R(t), �s (t), φ(t)), where R(t)

and �s (t) are the global orientation and translation of the root vertex, and φ(t)

is the set of relative rotations between successive children. For upper-body
motion tracking, it is assumed that only φ needs to be updated –this can be
seen intuitively as assuming that the tracked human is seated on a chair.

Fig. 3 shows the 3D kinematic model used in this system. It has four
degrees of freedom (DOF) in each arm. Three of them are located in the
shoulder, and one in the elbow. Model proportions and dimensions have
been set to average human values.

3.2 Inverse kinematics

As shown in Fig. 4, each arm is modelled with a two-bone kinematic chain.
The parent bone corresponds to the upper arm and is allowed to rotate
around three perpendicular axes. This provides a simplified model of the
shoulder joint. T (w

1 R) is the local transformation between the upper-arm
reference frame O1 and a coordinate frame attached to the torso and centered
at the shoulder joint w. The bone representing the lower arm is allowed to
rotate around a single axis, corresponding to the elbow joint. T (2

1R,1�l1)
denotes the local transformation between the upper-arm reference frame O1

and the lower-arm reference frame O2, where 1�l1 = (0, 0, l1)
T , being l1 the

length of the upper-arm, and 2
1R corresponds to the rotation θe about the

elbow axis.
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Figure 4: Kinematic model of the arm showing local coordinate frames and
elbow circle (see text).

Given a desired position for the end-point of the arm at time instant t+1,
w�p

(t+1)
d , and given the rotation matrices w

1 R(t) and 1
2R

(t) at the previous time
instant t, the problem is then to find the updated matrices w

1 R(t+1) and
1
2R

(t+1). A simple geometric method is summarized here that can solve such
problem. See [13] for further details.

1. Bring w�p
(t+1)
d within reach of the arm:

if |w�p
(t+1)
d | > (l1 + l2) then w�p

(t+1)
d ←w �p

(t+1)
d

l1 + l2

|w�p
(t+1)
d |

2. Compute elbow circle: . Posing the model arms is an under-constrained
problem, as four degrees of freedom must be specified from only three
constraints, corresponding to the co-ordinates of the desired end-point
position w�p

(t+1)
d . The elbow circle is defined as the set of positions

that the elbow is free to adopt when the end-point of the arm reaches
w�p

(t+1)
d . It has a radius r and it is contained in a plane perpendicular

to the vector w�p
(t+1)
d at a distance b to the shoulder joint.

r2 =
(d + l1 + l2)(−d + l1 + l2)(d− l1 + l2)(d + l1 − l2)

2d

b =
√

l21 − r2
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where d = |w�p
(t+1)
d |

3. Choose updated elbow axis w�x
(t+1)
2 and location w�l

(t+1)
1 : We chose the

elbow axis at time instant t+1 to be the closest to the one at the
previous time instant, w�x

(t)
2 :

w�x
(t+1)
2 = (w�p

(t+1)
d ∧ w�x

(t)
2 ) ∧ w�p

(t+1)
d

w�l1 = b
w�p

(t+1)
d

|w�p
(t+1)
d |

+ r
w�x

(t+1)
2 ∧ w�p

(t+1)
d

|w�x
(t+1)
2 ∧ w�p

(t+1)
d |

4. Fill updated rotation matrices w
1 R (t+1) = (w�x1

w�y1
w�z1) and 1

2R
(t+1) =

(1�x2
1�y2

1�z2) with:

w�x1 = w�x2
1�x2 = (1, 0, 0)

w�z1 = w�l1/|w�l1| 1�z2 =w R1(
w�pd −w �l1)

w�y1 = w�z1 ∧ w�x1
1�y2 =1 �z2 ∧ 1�x2

3.3 Enforcement of joint limits and collision avoidance

The proposed inverse kinematics method can obtain an arm pose that will
put the hand of the model in the required position. The resulting pose must
be analyzed in order to determine if it corresponds with a valid and natural
body configuration. In this work we consider two limitations: a valid pose
must respect joint limits and cannot produce a collision between different
links.

• Detection of joint limit violations. Given the updated shoulder and
elbow rotation matrices, it is necessary to extract joint angles from
these matrices that correspond to the DOFs of the human model.

This process is made by applying a parameterization change to ro-
tation matrices. There is a direct correspondence between Denavith-
Hartenberg (DH) [14] parameters and model joint angles, so the local
axes referred angles are converted to DH parameters. The shoulder
conversion can be done applying the following parameterization to the
rotation matrix w

1 R:

w
1 R =

(
cθ2cθ3 −cθ2sθ3 sθ2

sθ1sθ2cθ3 + cθ1sθ3 −sθ1sθ2sθ3 + cθ1cθ3 −sθ1cθ2

−cθ1sθ2cθ3 + sθ1sθ3 cθ1sθ2sθ3 + sθ1cθ3 cθ1cθ2

)
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(a) (b)

Figure 5: RAPID collision detection: (a) Valid pose. (b) Collision.

where θ1, θ2 and θ3 are the real DOFs of the model arm, cθi is cosθi

and sθi is sinθi.

The elbow angle is much easier to obtain: as there is only one DOF in
the elbow, the local rotation angle is equal to model θ4 angle.

Once the model DOFs are computed, the system can directly check if
any of them lies beyond its limits.

• Collision detection. We use RAPID [15] as the base of the collision
detection module. This library provides functions that can quickly and
efficiently check collisions between meshes composed by triangles, such
as the ones attached to the links in our model (Fig. 5).

Once the system detects an incorrect position (i.e. joint limit or collision),
it follows these steps:

1. The system looks for alternative poses (i.e. different arm configura-
tions). Imitation requires to place hands in certain coordinates, but
the elbow is free to move in the circle presented in Fig. 4. Thus, alter-
native poses will preserve hand positions, but will move the elbow in
this circle.

2. The motion of the arm should be as smooth as possible. Thus, alter-
natives should be more densely searched near the current elbow loca-
tion. This is implemented by exponentially distributing the alternatives
around the initial incorrect elbow position, as shown below:
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θ2i = π
1

100
(n−i)

n

θ2i+1 = −θ2i

i = 0, 1, 2, ...(n− 1) (1)

where θ2i and θ2i+1 correspond to two symmetric alternatives on the
elbow circle with respect to the current pose, and n = N

2
, being N the

number of alternative poses checked when current pose is erroneous.
This distribution places alternative poses on the elbow circle (Fig. 4).
As required, alternatives are more deeply distributed near the current
elbow position.

3. The system chooses the nearest valid alternative.

4. If there is no valid alternative, the arm remains in the last valid position.

The speed of the process depends on the number of alternatives it needs
to check. A system using a correct number of alternatives should produce
smooth movements and work in real-time even in the case in which all of
them need to be checked.

The alternative evaluation module has been also used when the system is
in a valid pose: in these cases, the two nearest alternatives to current pose
are checked. If one of them locates the elbow in a lower vertical position,
and do not produce limits violation nor collisions, then the elbow is moved
to that position. This allows the model to adopt more natural poses when
possible.

3.4 Scaling the model to fit the human

In order to coherently follow the movements of the human, the 3D model
will be scaled to match demonstrator’s height. The scale ratio will be the
following:

ratio =
heighthuman

heightmodel
(2)

In our implementation, the model height is 170 cm. The human height
is determined by the 3D position of the human head, provided by the vision
module.
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Imitated motions are then easily normalized by simply re-scaling the
model to its original size while preserving the joint angles sequence. In this
way, motions of very different people can be analyzed and compared.

4 Experimental Results

The proposed system has been tested using a STH-DCSG-VARX stereo
system and the Small Vision System software, provided by Videre Design
(www.videredesign.com). This architecture captures and preprocesses stereo
pairs. The size of left and right images is 320x240. The disparity map has
also a size of 320x240.

The face of the demonstrator is detected using a cascade detector based
on the scheme by Viola and Jones (see [16] for details). The particular
implementation of this scheme for the proposed system is deeply explained
in Deliverable 1 [9]. The 3D virtual model used to reproduce perceived
gestures is rendered and animated using OpenSceneGraph, an open source
graphic engine available at www.openscenegraph.org.

The whole system runs on a 2 GHz. Pentium IV computer using Linux
operating system.

The experiments performed to test the Human Motion Capture System
involved different demonstrators moving their hands in a non-controlled en-
vironment. The only imposed requisite was to wear long sleeves. Besides, as
the stereo system has a limited range, the demonstrator was told to stay at
more than 1.50 meters from the cameras. Fig. 6 show the results obtained
by the proposed system at an average rate of more than 25 fps.

As shown in Fig. 6, the generated pose closely resembles the pose of the
human demonstrator. The figure also shows that the disparity map computed
by the Videre system presents some noise. This noise will introduce errors
to the perceived depth of the head and the hands. The first versions of the
proposed system tried to reduce those errors by averaging the disparity values
of the skin pixels in the regions of interest. This lead to better results, but
still the errors in some pixels, specially those located in the borders, tended
to distort the results.

The current version of the system takes into account the confidence value
for the disparity of each pixel provided by the SVS software to reduce the
disparity noise. After several tests, it was decided that the best option was
to simply take as disparity value for each region the one associated with
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Figure 6: Human Motion Capture system: a) Left image of the stereo pair
with head (yellow) and hands (green) regions marked; b) Disparity map; and
c) 3D model showing generated pose.
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the highest confidence into that region. Then, the disparity value and the
pixel coordinates of the region centroid are used in combination with camera
parameters to extract (X, Y, Z) coordinates of the head and the hands. In
our system, the distance between the human and the cameras is around 170
cm. For these values, the theoretical depth resolutions for the SVS are under
1 cm - more precisely, 7 mm for a distance of 165 cm. But, as commented
above, there are different sources that introduce errors in the disparity map
and in the tracking algorithm. These errors reduce the effective resolution of
the stereo system. In any case, the average error is less than 5 centimeters.
This is a good enough result as the 3D model will help correcting incorrect
poses.

Figs. 7 and 8 show frames of an imitation sequence involving a different
demonstrator. While in Fig. 7 the movements of the human are fairly smooth
and are performed in an easily reachable area (hands quite separated from the
body), Fig. 8 shows more problematic frames. In this part of the sequence
the demonstrator is performing fast and large movements. The hands, also,
move near the body in some occasions, as depicted in the frames in Fig.
8. The model is able to find a valid and natural pose in these situations,
although sometimes the position of the elbow differs respect to human pose,
as in the second frame.

The third frame of Fig. 8 shows a situation in which the pose error
is larger than the average due to a substantial reduction in the size of the
tracked region. The region is, in fact, reduced to only one point. Thus, the
disparity of the region is computed using the value for this pixel. In this case,
this was not an accurate value, and the resulting pose is quite different to
the demonstrated one. Our future work will have to focus on this issue and
improve results in this situation, using information about previous frames to
filter the current position.
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Figure 7: Human Motion Capture system: a) Left image of the stereo pair
with head (yellow) and hands (green) regions marked; b) Disparity map; and
c) 3D model showing generated pose.
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Figure 8: Human Motion Capture system: a) Left image of the stereo pair
with head (yellow) and hands (green) regions marked; b) Disparity map; and
c) 3D model showing generated pose.
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