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1 Executive summary

The European Research Network - EURON - launched the Topical Research
Study ”VISOR - Visual perception system for a SOcial Robot” in June 2005,
under its second call for proposals. The project was officially launched by
EURON on September 15th, with a duration of one year.

Two partners were involved in the project: Ingenieŕıa de Sistemas In-
tegrados, of the Departamento de Tecnoloǵıa Electrónica, at the University
of Málaga (Spain); and the Instituto de Sistemas e Robótica of the De-
partamento de Engenharia Electrotcnica at the Universidade de Coimbra
(Portugal).

The aim of this research study was to investigate visual, human-oriented
perception skills for a social robot. In particular, this project investigated
how the requirements for accomplishing a visual task determine the optimal
architecture of a vision system. The issues that were considered were human
and object representation, and the selection of low-level and high-level vi-
sion features that are required for such representations. Relevant technical
achievements in those areas have been produced (see Section 4), which have
been disseminated in journal and conference papers, and have influenced a
number of Ph.D. projects (See Section 7). This project has partially funded
researcher exchanges (See Section 5) which have resulted in an ensemble ef-
fort to implement two vision architectures which integrate the subsystems
investigated (Section 4).

There have been two trial sites where a series of experiments demon-
strating the developed vision architectures where shown to the public, at
University of Mlaga and University of Coimbra. (See Section 5.2).

2 Project objectives

The visual perception system of a social robot is the responsible of solving
several complex tasks such as the human faces identification, head and hands
motion capture, gesture recognition or the reading of facial expressions to
emulate human social perception. This information permits that the robot
be able to identify who the human is, what the human is doing, how the
human is doing it and even to imitate the human motion. Besides, these
human-related tasks must be run in parallel with object-related ones, which
permit the robot to recognize objects extracted from the environment. This
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supposes a high computational load which must be efficiently managed in
order to achieve a fast, natural response of the robot in the human-robot
interaction cycle.

Computer vision research has traditionally emphasized on investigating
each module of the whole visual perception system as a general and iso-
lated item. Such research efforts often generate unrealistic solutions from
ill-defined assumptions. In contrast, this research study has considered the
visual perception system as a whole and its main objective has been the de-
velopment of a task-oriented vision system. This system has finally oriented
its resources to solve two different problems: a human-robot interaction sce-
nario, where the robot must interact with humans which will guide the robot’s
actions using gestures, and a human upper-body motion capture framework.
In both cases, our research has been focused on interactions among modules
as well on each individual vision module. In order to achieve these goals, this
research study has accomplished the following tasks:

• Face recognition.

Face detection and recognition are two essential tasks which must be
assumed by the visual perception system of a social robot. Although
other popular approaches propose to look for faces in the whole input
image, our system has reduced this search to a set of regions of the im-
age. These regions present a high density of skin-coloured pixels. Then,
the skin colour detection, face detection and face recognition modules
can be located in the three different levels of our vision architecture and
they constitute a reduced version of the whole system. The skin colour
detection module is a low-level module, which must be integrated in
the pre-attentive stage of the vision system. The face detection looks
for faces in certain regions. It is also a low-level module, but it must
be positioned in a higher level: the semi-attentive stage. Finally, face
recognition can be considered as a high-level module. It is located at
the attentive stage of the vision system.

• Attention mechanism.

As it is shown in the anterior item, the data acquisition and the in-
formation extraction processes are closely related in the proposed vi-
sion system and they depend on the current task. Following this as-
sumption, the perception process becomes an active mechanism that
extracts the most relevant information from the huge amount of input
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data depending on the final application. This selection or pre-attention
mechanism allows to efficiently exploiting the available computational
resources either by dedicating all of them to a specific perceptual task
or by sharing them among a small set of tasks. In this research study, a
general purpose attention mechanism based on the feature integration
theory [1] has been developed. This mechanism is capable of handling
dynamic environments, and detecting both human faces and hands and
objects of interest in a fast way. It divides the whole vision system in
the three levels previously mentioned: pre-attentive, semi-attentive and
attentive stages. Each stage could be composed by several modules.

• Hierarchical tracking of head and hands: Gesture recognition.

Other very important task that must solve the visual perception system
is the ability to capture the human motion. It is especially interest-
ing to track the human hands because, in addition to facial expres-
sions, non-verbal communication is often conveyed through gestures
and body movement. Human hands are non-rigid objects with many
degrees of freedom and can, through different postures and motions,
be used to express information. In order to achieve a fast tracking of
non-rigid objects like human’s head or hands, a pyramid structure has
been modified to increase its efficiency: the Bounded Irregular Pyra-
mid (BIP) [2]. The BIP is a mixture of regular and irregular pyramids
whose goal is to combine their advantages: low computational cost and
accurate results. Thus, its data structure combines a regular decima-
tion process with an union-find strategy to build the successive levels
of the structure. The irregular part of the BIP allows to solve the three
main problems of regular structures: non-connectivity preserving, non-
adaptability to the image layout and shift-variance. On the other hand,
the BIP is computationally efficient because its regular part prevents a
big increase of height.

• Human motion capture system.

The human motion capture problem has been accurately solved using
marker-based systems that usually require the human to wear especial
gear and move within a constrained capture space. However, in this
research study, the detection and tracking of the demonstrator upper-
body movements has been solved using a marker-less approach which
assumes that is not necessary to know with precision the movements
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of all joints to achieve an accurate human motion capture. Although
some precursors of this system [3][4] assumed that it was enough to
track the movements of the head and the hands to obtain the global
pose of a human upper-body, experimental results have finally shown
that more information regarding elbow pose and body orientation is
needed, in order to provide a better estimation of human movements.
Thus, the proposed architecture still considers the 3D movements of
the human head and hands as the most important features to recover
his motion, but it also processes silhouette information to provide ap-
proximated positions for the elbows and an overall body orientation.
Finally, it has been necessary to include a model-based pose estima-
tion module to remove inconsistent data. This pose estimation method
uses the information provided by the vision module to compute a set
of joint angles. These angles are obtained using a constrained inverse
kinematics algorithm. The analytic nature of this method allows it to
offer the required joint angles on real-time.

• Robotic head control module.

The hardware and software of a robotic head with three degrees of
freedom (pan, tilt and vergence) has been developed. Using this ro-
botic head, the visual system could interact deliberately with the en-
vironment by controlling the gaze and moving the focus of attention.
However, it must be pointed out that this head has not been finally
employed. In January 2006, the project provided us a stereo vision
system from Videre design. This system includes two cameras in a
fixed position and it permits to obtain depth information at 30 images
per second. This static head imposes us the impossibility of tracking
any item which goes out the field of view of the vision system.

• Task-oriented control architecture.

Since visual sensing is performed with limited resources, visual strate-
gies must to be planned so that only necessary information will be
obtained. The generation of the appropriate visual strategy entails
knowing what information to extract, where to get it, and how to get
it. This assumption is the base of the proposed architecture: the pre-
attentive stage of the attention mechanism extracts the most relevant
information from the huge amount of input data (e.g. skin colour re-
gions), the semi-attentive stage makes a first classification of the regions
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of interest and it permits to track the movement of these regions, and
the attentive stage uses this data to achieve more complex behaviours,
like face or gesture recognition and upper-body motion capture.

3 Relationship with Euron objectives and other

projects in and out of Euron

The objective of the Euron is ”to ensure that adequate resources and mecha-
nisms are available to enable Europe to become the leading area in robotics”.
In this sense, VISOR has contributed with the following items:

• Research coordination at all levels between two European robotics
research labs, the Ingenieŕıa de Sistemas Integrados, of the Departa-
mento de Tecnoloǵıa Electrónica, at the University of Málaga (Spain);
and the Instituto de Sistemas e Robótica of the Departamento de En-
genharia Electrotcnica at the Universidade de Coimbra (Portugal).

• Education and trainining, by partially funding PhD programmes
at both research labs in Coimbra and Mlaga, and funding researcher
exchanges between them.

• Dissemination, through public deliverables and papers at interna-
tional conferences and refereed journals. VISOR has also organised a
workshop on Visual based Human-Robot Interaction, which was held
in conjunction with EUROS 2006.

Euron Call 1 for proposals funded the Prospective Research Project also
funded PHRIDOM, which looked at Physical Human Robot-Interaction from
the point of view of safety in cooperation between robot and human. In
contrast, VISOR has focused on visual human-robot interaction for social
robotics.

Outside of Euron, this project is highly related to the first stage of the
Project n. TIN2005-01349 from the Spanish Ministerio de Educación y Cien-
cia (MEC), which the ISIS group in Mlaga is currently unfolding. This
project proposes the development of a control architecture for humanoid ro-
bots aimed at the automatic learning of sensory-motor skills. This architec-
ture will be organised as a horizontal hierarchy of control layers where each
control layer will implement a sensory-motor primitive designed to solve a
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specific task. In this system, an active vision system will be developed to
filter the amount of visual information processed to estimate the state of
from complex, dynamic environments. Learning will be implemented as a
special primitive whose responsibility is the generation of new primitives by
imitation. The goals of this primitive will be: i) capturing and imitating
the motion of a teacher performing a particular task and ii) estimating the
changes to the environment that the teacher has caused, to a point where
the particular task performed by the teacher can be reproduced by the robot.
Therefore, the visual perception system must be capable of solve tasks like
the human motion capture or face recognition.

Finally, this research project is aligned with the objectives of the programs
Beyond Robotics Proactive Initiative (COGNIRON project), e-inclusion and
Technology-enhanced Learning, inside the priority IST (Information Society
Technologies of the VI Frame Program of the European Union).

4 Technical achievements of the project

4.1 Introduction

A social robot can be defined as an embodied agent that is part of a hetero-
geneous society of robots or humans. Therefore, a social robot must be able
to recognize humans or other social robots and engage in social interactions.
To achieve this interaction, social learning and imitation, gesture and natural
language communication, emotion and recognition of interaction partners are
all fundamental factors. This implies that the vision system of this social ro-
bot must be capable of solving the problems of identifying faces, measuring
head and hands poses, capturing human motion, recognizing gestures and
reading facial expressions. There are two different ways to accomplish the
development of the visual perception system of a social robot: the recon-
structive vision paradigm and the animate vision paradigm.

In the reconstructive paradigm, visual perception must recover informa-
tion from the whole scene. Thus, vision typically consists of three consecutive
actions: reconstruction of physical, real scene parameters from the image in-
put, segmentation of the image into regions, and description of this input.
Then, general tasks can be accomplished using higher-level modules which
act on this provided description. This process requires a huge amount of
computational capacity to manage the visual data acquisition and process-
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ing. On the other hand, animate vision proposes to dedicate all computa-
tional resources to solve a small set of specific perceptual tasks. That is, in
the animate paradigm, visual perception becomes a task-oriented process: if
visual sensing is performed with limited resources, they must be focused on
extracting only necessary visual information. To achieve this, the responses
to what information to extract, where to get it and how to get it, must be
known in advance. Besides, animate vision proposes that vision must operate
continuously and it must furnish results within a fixed delay. Rather than
obtain a maximum of information from any one image, as it proposes by the
reconstructive paradigm, the camera is an active sensor giving signals that
provide only limited information about the scene.

In this research study, visual perception is achieved following the basics
of animate vision. Thus, the information extracted from the input image
depends on current tasks. That is, the perception process becomes an active
mechanism that extracts the most relevant information from the huge amount
of input data depending on the application. If social behaviour imposes
a predefined set of visual-based tasks, the selection mechanism allows to
efficiently exploit the available computational resources by dedicating all of
them to the corresponding small set of tasks. Two examples of complex
visual-based social behaviours have been accomplished in this research study:
i) a human motion capture application which would permit to the social
robot the imitation of human activities, and ii) a human-robot interaction
scenario, where a set of humans controls by manual gestures the activity of a
robot. Both behaviours lie over task-oriented visual architectures which will
be described in next sections.

4.2 Overview

Each of the scenarios defined (human motion capture and human-robot in-
teraction) has led to an architecture which specializes in that application.

4.2.1 An attentional architecture for visual human motion cap-
ture

Fig. 1 depicts an overview of the proposed architecture. The whole archi-
tecture can be divided into three major modules related to the pre-attentive,
semi-attentive and attentive stages. Thus, the visual perception stage devel-
ops a general purpose attention mechanism based on the feature integration
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theory, which is capable of handling dynamic environments. The first and sec-
ond stages detect and track human faces and hands in a fast way. The third
stage recognizes faces and gestures and performs human upper-body motion
capture. The pre-attentive stage determines and selects salient image regions
by computing a number of different features. The semi-atttentive stage makes
use of object specific properties to filter out data and only track significant
objects. Thus, the system is related to the Backer and Mertsching’s proposal
[5] in several aspects. The first is the use of a pre-attentive stage in which
parallel features are computed and integrated into a saliency map. How-
ever, in contrast with this and other attention systems, we have introduced
the skin colour as input feature in order to detect human faces or hands as
possible regions of interest. Thus, in this work, skin colour is first detected
using a chrominance distribution model [6] and then integrated as input fea-
ture in a saliency map. Other similarity is that this pre-attentive stage is
followed by a semi-attentive stage where a tracking process is performed.
But, while Backer and Mertsching’s approach performs the tracking over the
saliency map by using dynamics neural fields, our method tracks the most
salient regions over the input image with a hierarchical approach based on
the Bounded Irregular Pyramid [2]. The output regions of the tracking al-
gorithm are used to implement the inhibition of return and avoid revisit or
ignore objects. The main disadvantage of using dynamic neural fields for
controlling behavior is the high computational cost for simulating the field
dynamics by numerical methods. The Bounded Irregular Pyramid approach
allows real time tracking of a non-rigid object without a previous learning of
different objects views [2]. Besides, the tracking approach can work simulta-
neously with several regions without a high increment of the computational
cost. Finally, the attentive stage can recognize faces and gestures and it also
detects and tracks the demonstrator upper-body movements.

4.2.2 Nicole: an architecture for social interaction

Nicole is a multipurpose platform to investigate social interaction between
humans and robots. For the VISOR project, we have defined three goals:

First, to show the development of a system to recognize gestures from a
stream of camera images using a Bayesian framework. Second, to create a
scenario where interaction takes place between several people that play with
Nicole based on mapping of those gestures to actions performed by Nicole
(Nicole@Play see fig. 2). Third, to create a scenario where the face of a per-
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Figure 1: Overview of the proposed vision system

son can be learned automatically by an intelligent environment where Nicole
can interact with a specific set of people known as godfathers (Nicole@Face,
see fig. 3). Other scenarios are thinkable like the already well explored guide
robot context [7], [8], [9].

We present a system that extracts the gesture-features of a human actor
from a series of images taken by a single camera. Figure 4 shows the archi-
tecture of our system with the camera placed inside the ’Observation Level’.
Depending on the scenario (Nicole@Face) we also incorporate face recogni-
tion into the system. The hands and the face of the actor are detected and
tracked automatically without using a special device (markers). The system
is based on implementations to capture human motions of hands and head
using the open-source library OpenCV from Intel. From the motion trajec-
tories we extract features like displacements (in pixels) of hands and head.
The ’Recognition level’ is based on a Bayesian method to find the most likely
gesture that might have created the observed sequence of features using the
commercial ProBT library from ProBayes. The script for the scenario is
placed inside the ’Action Planner Level’ which is in ultimate control of the
process.

The rest of this section summarizes the main aspects of the components of
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Figure 2: Scenario 1: People
play with Nicole.

Figure 3: Scenario 2: Nicole
can recognize a godfather.

Figure 4: System architecture of the Welcome Desk

both architectures. For further details please see the previous VISOR public
deliverables.
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4.3 Skin colour detection

In this section, the parametric skin colour segmentation approach imple-
mented in the context of this project is presented. This approach is based
on the work of Terrillon et al. [10, 11] which uses a skin chrominance model
built over the TSL (Tint-Saturation-Luminance) colour space. It assumes
that the chrominance of Caucasian skin can be modeled by an unimodal el-
liptical Gaussian joint probability density function. Once the model is built,
the Mahalanobis metric is used to discriminate between skin and non-skin
pixels.

4.3.1 Chrominance model of Caucasian human skin

In order to build a chrominance model of human skin, the TSL colour space
has been selected. This space provides robustness to illumination varia-
tion because it efficiently separates the chrominace component –tint and
saturation– from the luminance one. Besides, it provides a confined and
therefore easily to model skin colour distribution. Fig.5 shows the cumula-
tive histogram obtained from the TS values of the skin colour pixels manu-
ally segmented of a set of 108 images. It must be noted that the luminance
component of the TSL colour space has been removed and it can be also
appreciated as the distribution of the skin colour is confined.

We assume that the distribution shown in Fig.5 can be modelled by an
unimodal elliptical Gaussian joint probability density function given by

p[X̄(i, j)/Ws] = (2π)−1| ¯̄C
−1
2

s | exp [
−λ2

s(i, j)

2
] (1)

where ¯X(i, j) = [T̄ (i, j)S̄(i, j)]T represents the random measured values of T
(tint) and S (saturation) of a pixel with coordinates (i, j) in an image. Ws is
the class describing the skin colour. ¯̄Cs is the covariance matrix of the skin
colour distribution:

Cs =

[

σ2
Ts

σTSs

σTSs
σ2

Ss

]

(2)

and λs(i, j) is the Mahalanobis distance from vector x̄(i, j) to the mean vec-
tor m̄s = [mTs

mSs
]T obtained from the skin colour distribution. Equation

(1) means that the probability of a pixel to be a skin colour pixel depends on
the covariance matrix of the skin colour distribution as well as on the Ma-
halanobis distance between the pixel colour and the mean colour of the skin
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Figure 5: a) Histogram of the skin colour distribution; b) top view of the
histogram.

distribution. Therefore, the larger λs(i, j), the lower the probability that the
pixel be a skin pixel.The Mahalanobis distance is given by

[λs(i, j)]
2 = [X̄(i, j) − m̄s]

T ¯̄C−1
s [X̄(i, j) − m̄s] (3)

Equation (3) defines elliptical surfaces in chrominance space of scale λ(i, j),
centered about m̄s and whose principal axes are determined by ¯̄Cs.

Equations (1) and (3) show that the skin colour chrominance model is
whole described by m̄s and ¯̄Cs. The values obtained for the skin colour
distribution shown in Fig.5 were the following:

m̄s = [ 149.0228 23.0944 ] (4)

¯̄Cs =

[

0.0058 0.0009
0.0009 0.0094

]

(5)

4.3.2 Skin colour segmentation

Once the parameters of the model have been computed, it can be used to
extract skin colour regions from real images. The process to segment an
input image is the following:

1. The RGB input image is transformed in a TSL image.



VISOR FINAL REPORT 17

2. λ(i, j)2 is computed for each pixel of the input image using equation
(3). Each value is compared with a threshold λ2

T .

3. A value of 1 is assigned to pixel (i, j) if λ(i, j)2 ≤ λ2
T . Otherwise, pixel

(i, j) is set to 0.

The output of the skin colour segmentation algorithm is a binary image where
the skin colour pixels are set to 1 and non-skin colour pixels are set to 0.

The threshold λ2
T depends on the used camera and can be computed

studying the percentage of false positives provided by the segmentation process.
In our case, a range of false positives between 10% and 28% produces λ2

T ∈
[6..10]. Finally, in this work we propose to include two new thresholds in the
model. These thresholds avoid that grey and black pixels will be included in
the computed skin colour distribution. Thus, grey pixels are characterised by
a small saturation value and a random tint value, and they can be removed
from the skin colour distribution if only pixels with a saturation value higher
than ST are considered as skin colour pixels. On the other hand, black colour
is only characterised by a low L value. Then, black regions can have random
values in T and S. As the model only takes into account T and S values,
then it is possible to classify a black pixel like a skin coloured pixel. To avoid
that, only pixels with L > LT are included in the model.

One of the main problems of the skin colour detector is that these three
thresholds must be adjusted to the finally employed camera. Thus, Fig.
6 shows some results obtained where parameters have been experimentally
adjusted.

4.4 Face detection

A first step for any face processing system (i.e. face recognition or facial ex-
pressions identification systems) is to detect if one or more faces are presented
in the image and to compute their locations. Given an arbitrary image, the
goal of a face detection system is to determine whether or not there are faces
in the image and, if present, return the image location and area of each face
[12]. The existence of factors which can modify the appearance of a face in
the image makes face detection a challenging task. Some of these factors are
the presence of structural components in the face as beard, mustache, hat or
glasses, the pose and orientation, the facial expression, the variations in the
illuminance, oclussions and noise.
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Figure 6: a-c-e) Original images; b-d-f) skin detection results λ2
T = 10.0

ST = 10 LT = 80.
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In this project, a feature-based method for face detection is proposed (see
[12] for alternative approaches). This method is based on the previous work of
Viola and Jones [13], which uses Haar-like features to detect faces. Haar-like
features encode the existence of oriented contrasts in the input image. This
method has proven to be very fast (15 frames per second in a conventional
desktop). Two of the main characteristics of the Viola and Jones’s method,
that are exploited in the work proposed here, are the following:

• The use of a set of features which are reminiscent of Haar Basis func-
tions. In order to compute these features very quickly at many scales,
they introduce a new image representation called integral image. It can
be computed from an image using a few operations per pixel. Once
computed, any of the Haar-like features can be calculated at any scale
or location in constant time.

• A simple an efficient classifier is used to select a small number of im-
portant features from the huge amount of potential ones. This classifier
is built using the AdaBoost learning algorithm [14].

Although the proposed algorithm is based on the key ideas of [13], a main
contribution is presented. While Viola and Jones compute the Haar-like
features over the whole image, we propose to previously detect skin colour
regions in the input image and then to compute the Haar-like features only
in the set of skin colour regions where a face is probably located. In order to
select these potential ”face regions”, a set of tests is computed over each skin
region. Therefore, the face detection method proposed has two main steps:

1. Potential face regions of the input image are detected. This step can
be subdivided into two stages: first, the skin colour pixels of the input
image are detected and grouped into connected regions. Second, a set
of structural tests is applied to the previously detected skin regions in
order to discard the regions that clearly are not a face.

2. The remaining regions are classified as face or not face using the method
proposed by Viola and Jones [13].

Different modules perform the skin colour detection, structural-based filter-
ing and classification. If the first task can be included in the pre-attentive
stage of the vision system, the other two tasks will be conducted at the
semi-attentive stage.
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4.4.1 Potential face regions extraction

The first step of the proposed face detection system is to compute the skin
colour pixels of the input image. This resulting ”skin image” is eroded and
dilated in order to remove small noisy regions. Then, the connected skin
colour regions are computed using a region labelling algorithm. Once the
skin pixels of the skin image are grouped into connected regions, those whose
dimensions are clearly not the dimensions of a face are discarded. In order
to do that, four different tests are applied to the connected skin regions:

1. Test of minimum and maximum area: the skin regions whose area is
less than the 1% of the total area of the input image are discarded.
The skin regions whose area is higher than the 80% of the total area of
the input image are discarded.

2. Test of elongated regions: each skin region whose bounding box height
is less than the 40% of its bounding box width is discarded. Each skin
region whose bounding box width is less than the 40% of its bounding
box height is discarded.

3. Test of sparse regions: each region whose area is less than the 50% of
the area of its bounding box is discarded.

4. Test of proportion: if the height/width proportion of a region is higher
than 1.6, the height of the region is reduced until (height/width) < 1.6.

All the previously used thresholds have been empirically obtained and they
can be changed in order to control the flexibility of the tests. Fig. 7 shows
the regions obtained after applying the tests to the labelled images.

Once the previously explained set of regions is discarded, the remaining
regions are used to build 24x24 images which will be inputs of the classifi-
cation algorithm. This algorithm is employed to discriminate between face
and non-face regions.

4.4.2 Classification algorithm

The classifier is built using the Adaboost learning algorithm [14] which selects
a small set of critical face features from a large set of features. The used
features are the Haar-like features [15]. This classifier has been proposed by
Viola and Jones [13].
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Figure 7: a) Labelled images; b) remaining regions after the tests.

Fig.8 shows three of the used features. In all examples, the sum of the
pixels which are within the white rectangles are subtracted from the sum of
the pixels in the grey rectangles, providing the feature value. These feature
values can be computed very quickly from the integral image [13]. The inte-
gral image is an intermediate representation for the image which at location
(x, y) contains the sum of the pixels above and to the left of (x, y) inclusive.
Using the integral image it is possible to compute the sum of the pixels within
any image rectangle with only four memory accesses [13]. Therefore, a two-
rectangle feature is computed with six memory accesses. A three-rectangle
feature needs 8 memory accesses and nine memory accesses are needed to
compute a four-rectangle feature (see Fig. 8).

From each subimage, an excessively high number of features can be com-
puted. To select a small set of critical features (T ) and to train the classifier,
the Adaboost algorithm can be used. The Adaboost learning algorithm con-
sists of T weak classifiers (one for each feature) which are combined to form
a strong classifier. Each weak classifier is designed to select the single rec-
tangle feature which best separates the positive and negative examples. For
each feature, the weak learning process determines the optimal threshold
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Figure 8: Memory accesses needed to compute: a) a two-rectangle feature;
b) a three-rectangle feature; c) a four-rectangle feature. For example the
two-rectangle feature is computed as: B−A = (5−6−3+4)− (3−4−1+2)

classification function, such that the minimum number of training images
are misclassified. Therefore, a weak classifier (h(x, f, p, θ)) consists of a fea-
ture (f), a threshold (θ) and a polarity (p) indicating the direction of the
inequality:

h(x, f, p, θ) =

{

1 if pf(x) < pθ
0 otherwise

(6)

The process to select the optimum set of weak classifiers from the whole set
of possible weak classifiers is detailed presented in [13]. Once this set of weak
classifiers has been obtained, the final strong classifier is a lineal combination
of them. It is represented using equation (7).

C(x) =

{

1
∑T

t=1 αtht(x) ≥ 1
2

∑T

t=1 αt

0 otherwise
(7)

being C(x) = 1 when the input image is classified as face and 0 in another
case.

4.4.3 Experimental results

In order to perform the training of the classifier, we have used a set of N =
200 positive (face) and negative (non-face) images. Specifically, 100 positive
and 100 negative images have been used. The number of computed potential
features has been K = 108, 241. Although the total number of features
is 134,736 in a 24x24 subimage, we have discarded some of them because
their contribution to the training process is not important. The number of
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training iterations and final features has been T = 150. This number has
been empirically obtained.

The features obtained in the training process are used to detect the faces
presented in real images. Fig. 9 shows the results of the face detection
process in several images. The face detection process has proven to be very
fast: 0,033 seconds (30 fps) with 192x256 images and 0,043 seconds (24 fps)
with 256x320 images using a 2,4 GHz Pentium IV PC.

4.5 Face recognition

This Section presents the development, implementation and experimental
results for a system named ’Automatic Face Learning for the Welcome Desk’.
It is embedded in a scenario where a person approaches the welcome-desk
to get his face learned. The welcome-desk is mainly a PC equipped with a
fire-wire camera. The system asks for permission to include the user to the
’godfather’ database. In case the user agrees some images of his/her face
will be collected and stored including the user’s name. The system will first
execute the learning and afterward the classification algorithm.

4.5.1 Theory

Principal Components Analysis (PCA) Kirby and Sirovich demon-
strated based on the Karhunen-Loe‘ve transform (aka principal component
analysis) that images of faces can be linearly encoded using a modest number
of basis images [16]. Given a collection of n by m pixel training images repre-
sented as a vector of size m by n, basis vectors spanning an optimal subspace
are determined such that the mean square error between the projection of
the training images onto this subspace and the original images is minimized.
These eigenvectors are later known as Eigenfaces since these are simply the
eigenvectors of the covariance matrix computed from the vectorized face im-
ages in the training set.

Turk and Pentland applied principal component analysis to face recog-
nition and detection [17]. Similar to [16], principal component analysis on
a training set of face images is performed to generate the Eigenfaces which
span a subspace (called the face space) of the image space. Images of faces
are projected onto the subspace and clustered. Similarly, nonface training
images are projected onto the same subspace and clustered. Since images of
faces do not change radically when projected onto the face space, while the



VISOR FINAL REPORT 24

Figure 9: Face detection results
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projection of nonface images appear quite different. To detect the presence
of a face in a scene, the distance between an image region and the face space
is computed for all locations in the image. The distance from face space
is used as a measure of ’faceness’ and the result of calculating the distance
from face space is a ’face map’. A face can then be detected from the local
minima of the face map. Many works on face detection, recognition, and
feature extractions have adopted the idea of eigenvector decomposition and
clustering.

Eigenfaces in Face Recognition The recognition task intents to extract
the relevant information contained in a face image encoding it for future
comparison with a also encoding models in a database. The simplest way to
extract the information in a face is to capture the variation in a collection
of face images. Given a training set of images we want to find the principal
components of the distribution of faces, i.e. its eigenvectors. Together, these
eigenvectors characterize the variation of a face image or a set of features for
each face. Each eigenvector has a weight for an image and can be displayed
producing a ghostly image called eigenface.

The face recognition system is based on eigenspace decompositions for
face representation and modeling. The learning method estimates the com-
plete probability distribution of the faces appearance using an eigenvec-
tor decomposition of the image space. The face density is decomposed
into two components: the density in the principal subspace (containing the
traditionally-defined principal components) and its orthogonal complement
(which is usually discarded in standard PCA).

Suppose a face image consisting of N×N pixels, so it can be represented
by a vector Γ of dimension N. Let {Γi|i = 1, ...,M} be the training set of
face images. The average face of these M images is given by

Φ =
1

M

∑

Γi. (8)

Then each face Γi differs from the average face Φ by Φi.

Φi = Γi − Φ, i = 1, ...,M. (9)

A covariance matrix of the training images can be constructed as follows:

C = AAT , (10)
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where A = [Φ1, ..., ΦM ]. The basis vector of the face space, i.e., the eigen-
faces, are then the orthogonal eigenvectors of the covariance matrix C. Find-
ing the eigenvectors of the N×N matrix C is an intractable task for typical
image sizes, hence, a simplified way of calculation has to be adopted [15].
Since the number of training images is usually less than the number of pixels
in an image, there will be only M − 1, instead of N , meaningful eigenvec-
tors. Therefore, the eigenfaces are computed by first finding the eigenvectors,
vl(l = 1, ...,M) of the M×M matrix L:

L = AT A, (11)

The eigenvectors, ul(l = 1, ...,M), of the matrix C are then expressed by
a linear combination of the difference face images, Φl(i = 1, ...,M) , weighted
by vl(l = 1, ...,M):

U = [u1, ..., uM ] = [Φ1, ..., ΦM ][v1, ..., vM ] = A × V. (12)

4.5.2 Implementation

The system architecture consists of three main modules: face detection,
learning and face recognition, and an initialization module, like shown in
Fig. 10

Figure 10: State diagram for detection, recognition and learning

In order to implement the Automatic face-learning for the Welcome Desk
we use the OpenCV [18] library by Intel. This is a open source computer
vision library providing a set of functions that might prove to be useful for
our task.

Overview
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Database During the recognition process a database of known people is
used, with two directories for each person. Through the names of the direc-
tories we can infer the names of the people and their number. Each know
person has a recorded sequence of 250 images of the upper half of the body
(size 320x240 pixels, RGB). From this sequence 20 images of the face are
created and stored (size 32x32 pixels, gray scale). The former is further on
referred as the test set, the late as the training set.

Figure 11: Directory structure of the database. The training set folder con-
tains a set of 20 face images per person. The recorded set folder contains 250
images per person and along this report is referred as test set. In the results
folder we store some important information collected during run time

Initialization As can be seen in Fig. 10 the system requires a initialization
module, to collect some information to be used in the detection, recognition
and learning modules. In Table 1 we describe the operations performed in
the Initialization module.

Initialization

1. Read number and names of known people.

2. Read training sets.

3. Build eigen spaces using the function cvCalcEigenObjects∗.
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4. Read thresholds θi.

∗ Function from openCV library [18].

Table 1: Operations performed in the Initialization module

Face detection The way of creating images of the face is the same through
the whole program whether for learning or for recognition. From the input
images (whether recorded or grabbed) the Haar-like feature detector will
extract images of the face. Finally the images are scaled 32x32 pixels. These
operations are performed by the Face Detection module, by using the function
cvHaarDetectObjects from [18].

Recognition In the recognition process we use the previously scaled image
to categorize a face. By projecting this image into the eigenspaces of the
known people we get a projected image. Correlating these two images we get
a distance measure, according to Eq. 13.

ε =

∑

x,y (Img2(x, y) − Img1(x, y))2

√

∑

x,y Img2(x, y)2 ∗
∑

x,y Img1(x, y)2
(13)

Then, we make a conditional exclusion of the people through the thresh-
olds, submitting the results to a filter which produces a result. The whole
recognition procedure is described in the following table.

Recognition

1. (Input)

1. A frame with face;

2. Number of people in the database - npeople;

3. Names of the people in the database - names[i];
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4. Threshold values for each person in the database - θi;

5. Results to filter - maxfilter;

2. (Projection and correlation)

1. For i to npeople

1. Create projected image of the detected face using the cvEigen-
Projection∗ function;

2. Correlate projected and detected image using the cvMatchTem-
plate∗ function, resulting a distance measure ε, according to
Eq. 13;

3. Choose εi < θi;

4. result[j] = argi of min{εi};

5. if j++ = maxfilter goto Filtering;

3. (Filtering)

1. For i to npeople

1. For j to maxfilter

1. if count result[j] = i > MAXFILTER
2

· recognizedPerson = name[i];

2. else

· recognizedPerson = unknown;

4. (Output)

· recognizedPerson;

∗ Function from openCV library [18].
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Learning In the case that a person is unknown to the system we are able
to add him/her to the database. Some interaction and time are required
in this case. The user need to type his/her name and then the system will
capture some images of the person, adding it to the database structure to
building a test set and a training set. This is an important operation, once
these sets of images are needed to learn the threshold for the new known
person. The threshold is learned through the mean and standard deviation
obtained recursively. Based on the mean

µε = ε =
1

N

∑

i

ε, (14)

we compute a recursive mean (Eq.15) using the ε (Eq. 13) resulting of
the correlation between each image in the test set and its projection in the
respective training set.

µi =
µi−1

i
+

ε

i
(15)

The standard deviation is recursively obtained by using the last recursive
mean (Eq. 15) and the actual ε value, according to Eq. 16.

σi =
σi−1

i
+

(µi − ε)2

i
(16)

We finally calculate the threshold θ using the recursive mean (Eq. 15) and a
factor k applied to the recursive standard deviation as described in Eq. 17.

θ = µε + k × σε (17)

In the following table we describe the whole procedure of the threshold
learning.

Learning

1. (Input)

1. N frames with a face from the person to learn - nframes;

2. Number of people in the database - npeople;
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3. Names of the people in the database - names[i];

4. Eigenspace of the person to learn;

2. (Learn threshold)

1. For i to nframes

1. Load frame;

2. Detect a face in the frame

3. Extract, resize and convert the face to gray scale;

4. Create projected image of the detected face using the cvEigen-
Projection∗ function;

5. Correlate projected and detected image using the cvMatchTem-
plate∗ function, resulting a distance measure ε, according to
Eq. 13;

6. Create projected image of the detected face using the cvEigen-
Projection∗ function;

7. Correlate projected and detected image using the cvMatchTem-
plate∗ function, resulting a distance measure ε, according to
Eq. 13;

8. Calculate recursively the mean µε as described in Eq. 15.

9. Calculate recursively the standard deviation σε as described
in Eq. 16;

2. Calculate the threshold according to Eq. 17

3. (Output)

· Write threshold to a file;

∗ Function from openCV library [18].
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σε =

√

1

N

∑

i

(εi − µε)
2 (18)

4.5.3 Experiments

Overview Along this work we will test the behavior of our recognition
system in different situations. To avoid some confusions let us, first, define
the most common expressions used along the experiments description:

• Training set - set of images, pertaining to a defined subset, used to
form the eigenspace.

• Test-set - set of images, pertaining to a defined subset, used as input.

• Named-set - set of images pertaining to the named subset.

• Normal conditions - set of predefined conditions used in some ex-
periments, as described next:

- The model is posing in frontal face.

- The model background color is light gray.

- The room illumination is composed of all ceiling lights on plus 2
halogen lights projecting also to the ceiling.

- The camera was manually set using the setting from Table 2.

Camera settings
brightness 320 auto-exposure 510 sharpness 100

blue/u 100 red/v 65 saturation 100
gamma 1 shutter 7 gain 150

Table 2: Camera setting along the experiments

Considering a space set of images, we have defined some particular con-
ditions that may have heavy influence in the performance of our recognition
system. Thus, we have defined a few subsets, represented for our model - the
manikin, in the Fig. 12, used in the experiments. The subset manikin0 con-
tains the normal conditions, as described before. In the manikin1 subset are
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contemplated different face poses, i.e. this sub-set has faces rotated ±300 in a
vertical axis. The manikin2 subset is related to variations in the background
color. We have test 3 different background colors: black (manikin2b), gray
(manikin0) and white (manikin2w). As a training set, for one person, have
20 face images, we defined a training set for manikin2 having 7 images with
black background, 7 with white background and 6 with gray background.
The manikin3 subset deals with different light direction and intensity.

The Fig.13 shows examples of distinct face images pertaining to each
previously described subset. The represented images are extreme cases inside
each subset. Paying attention to the different subsets (see Fig. 13) and to
the Fig. 12 we can see that all them have at least one image taken in normal
conditions, i.e, images b), e) and h) from Fig. 13 are similar to the images
in the manikin0 subset.

Figure 12: Face images set Figure 13: Set of images for the
manikin

In the next list we present a brief description of ours experiments:

• Experiments I - Test the behavior of each test-set in a normal con-
ditions and a specialized training set, evaluating its influence in the
recognition system.

• Experiments II - Build an optimal training set based on the results
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achieved in Experiments I. Test this training set using all available
test-sets.

• Experiments III - Build training sets of different known people.
Study the recognition system performance addressing the use of dif-
ferent thresholds definitions.

• Experiments IV - Study the thresholds calculation method concern-
ing to the size of the training set and the test sequence.

Evaluation measurements To analyze the performance of the defined
θthreshold in the recognition process we have defined the tags False Accep-
tance (FA) and False Rejection (FR) as evaluation measurements. If a
distance ε is below θthreshold and is not a correct match we say that is a False
Acceptance. On the other side, if a person is a correct match but the measure
ε is above the define θthreshold we say that is a False Rejection.

Experiments I Along this first experiment the face space set was con-
structed only with images from an individual - the manikin.

• Test1: Testing manikin0-set on different training sets. In the
first test we have feeding in a manikin0 test-set in the different manikin
training sets. Analyzing Fig. 14 we see that the mean of distances µε

is clearly small for the manikin0 training-set because we are compar-
ing images from the same subset. For the training-sets manikin1 and
manikin2 the mean µε increases, suggesting that both the different fa-
cial poses and the background variations have great influence in the
recognition process. The distance ε for manikin3 training set is similar
to the achieved for the manikin0 training set.

• Test2: Testing manikin1-set on manikin0 and manikin1 train-
ing sets. In this section, the effect of different face poses is tested. If
the training set is from the manikin1-set and using both manikin0 and
manikin1 test-set, we achieve an low mean µε, however the σε disper-
sion is higher for the manikin0 training set (see Fig. 15). Along this
test we saw that if the face pose is close to ±300 the distance ε grows
a lot. This explains some dispersion σε in the mean µε.
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Figure 14: Mean of distances feeding in images from manikin0-set in different
manikin training sets

• Test3: Testing manikin2-set on manikin0 and manik train-
ing sets. Face background plays an important role in our recognition
process because entire information in the face image is used, without
discarding any part of the image. High contrasts between the back-
ground of the training set and the test-set leads to a high value of the
mean of distances µε. As can be seen in Fig. 16 we achieve low mean
µε using a mix-background training set (manikin2), for all the different
test-sets. However, if the test-set is from manikin2b or maninkin2w and
the training set is from the manikin0-set the mean µε increases quickly.
Comparing the results achieved using the training set manikin0 and
feeding in images from the manikin2b and manikin2w subsets we see
a huge difference in the means µε. To explain this we need to refer
that the background color in the manikin0 subset is light-gray, hence,
much more close to the white background color used in the manikin2w
subset. The results from this test proof that the recognition process
has some problems dealing with backgrounds color variations.

• Test4: Testing manikin3-set on manikin0 and manikin3 train-
ing sets The influence of the light direction and intensity are addressed
in this test. We see, that, if the test-set was taken from then manikin3-
set the mean of distances µε is lower compared to a test-set taken from
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Figure 15: Mean of distances feeding in images with face pose variation (from
manikin1-set) in different manikin training sets

the manikin0-set (see Fig. 17).

Experiments II Based on the evaluation of the results from Experiment
I, we defined the composition of an optimal training set, shown in the Table
3, to use in this experiment. We are, now, interested to test the influence
of variation in the training set images. In this experiment the training was

Nimages Type Subset
2 normal conditions manikin0
4 left face manikin1
4 right face
3 black background manikin2b
3 white background manikin2w
4 different light manikin3

Table 3: Composition of an optimal training set for the manikin

made with an optimal set from manikin, as described in Table 3. Then, we
have feed in face images from our known subsets and evaluate the results.

The mean of distances µε achieved with this training set is quite similar
to the one using the specialized training set (in section Experiments I). How-
ever, the system still treats with some difficult different backgrounds. In the
Fig. 18 we can compare the results for the mean of distances using different
training sets.
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Figure 16: Mean of distances feeding in images with different background
color (manikin2-set) in different manikin training sets

Experiments III In this experiment our first task is to build sets of face
images from different known people. The set of images is captured using the
conditions described next:

- The model face pose varies either in vertical or horizontal axis.

- The model background color is light gray.

- The room illumination is composed of all ceiling lights on.

- The camera was manually set using auto-exposure = 510, white balance
= 100 and gain = 150.

Our interest is to define a threshold θthreshold for the recognition system, using
the mean of distances µε, and evaluate the its performance. Training with
the captured set of face images from one person, we, then, feed in test-sets
from all the others known persons.

• Test5: Define one threshold for everyone To define the θthreshold

we use the furthermost µε for a correct match (Bernardo matches
Bernardo with a 5.74 mean of distances in Fig. 19) and the closest
µε for a wrong match (Joerg wrong matches Farinha with a 6.29 mean
of distances in 19). The threshold θthreshold is calculated like described
in Eq. 19.

θthreshold = 6.29 −
6.29 − 5.74

2
= 6.015 (19)
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Figure 17: Mean of distances feeding in images with different light intensity
and direction (from manikin3-set) in different manikin training sets

As can be seen in Fig. 19 there are situations where the defined
threshold is extremely close to the achieved mean of distances for per-
sons beside the correct one. In Fig. 19, if the training set is from
Farinha or from Joerg set of images, the candidates to be a correct
match are Farinha, Joerg and Manikin. In the table 4 we present the
False Acceptance rate using the threshold calculated in Eq. 19. In the
main diagonal of the same image we can see the recognition rate an in-
fer the False Rejection rate by substraction that value to 100%. Once
that Bernardo’s µε was used to calculate the threshold his recognition
rate is quite low.

Test set
Joerg Bernardo Manikin Farinha

Training set

Joerg 98.4% 0% 21.2% 34%
Bernardo 0% 52.4% 0% 0%
Manikin 0% 0% 100% 0%
Farinha 53.6% 0% 0% 97.6%

Table 4: False acceptance and recognition rate for known people using one
threshold.

As can be seen in table 4 in some cases we have a strong False Ac-
ceptance, i.e. 53.6% times Joerg is accepted as Farinha and sometimes
the Manikin and Farinha are also accepted as being Joerg. In Fig. 20
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Figure 18: Comparison of the mean of distances among an optimal, normal
conditions and tailored training sets using the manikin as model

we present the distances ε for Joerg and Farinha when we are trying
to recognize Farinha. From that graph we clearly see that we need to
decide among people with distances ε below the threshold. Another
drawback of the use of one threshold for all people is the fact that
sometimes False Acceptances occur simultaneously with False Rejec-
tions and also that the distance for False Acceptances are lower than
distances for rights matches, e.g. in Fig. 20 there are 5.6% times that
Joerg distance is better than Farinha distance.

• Test6: Define one threshold for each known person Based on
the mean of distances µε and in its variation σε, showed in Fig. 19, we
define a θthreshold for each person, truncating the result of the addiction
of µε, Eq.14 and the positive variation of σε, Eq. 18.

θthreshold = µε + σε (20)

In the Table 5 we present the θthreshold to use in this test.

After after calculate the θthreshold we follow the same procedure used in
Test5, i.e, the training set is made with the captured set of face images
from one person, and then, we feed in test sets from all the others
known persons.
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Figure 19:

Person Bernardo Farinha Joerg Manikin
θthreshold 0.08 0.04 0.04 0.02

Table 5: Threshold for each person in Test6

The reached results improved a lot, considering the False Acceptance
rate from Test5, but the recognition rate has decreased (see table 6) for
the majority people. This is explained by the rules applied to determine
the thresholds. Paying attention in the θthreshold calculation method we
see that forcing this value to be great, the recognition rate can be
improved, however, the False Acceptance rate will also increase.

In Fig. 6 we have presented the recognition rate using a fixed threshold
value for each person. From now on, we will use a θthreshold for each
person, but, instead of use a fixed value we will use a value calculated
using the Eq. 20.

Experiments IV After evaluating the performance of the threshold, cal-
culated in different manners, it becomes interesting to see what happens
varying the number of face images in the training set. Following this idea,
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Figure 20: False acceptance and recognition rate for known people using
different thresholds for each person.

Test set
Joerg Bernardo Manikin Farinha

Training set

Joerg 88.4% 0% 0% 0.8%
Bernardo 0% 77.2% 0% 0%
Manikin 0% 0% 98% 0%
Farinha 1.6% 0% 0% 87.2%

Table 6: False acceptance and recognition rate for known people using one
fixed threshold for each person.

we choose two known persons in our database, those that get the highest
and the lowest thresholds, i.e. Bernardo and Manikin, respectively, and we
evaluate the influence of the number of images in their threshold. It’s also in-
teresting, for us, to get a comparison measure for the recognition rate, based
on the False Rejections occurrence.

The procedure of this experiment is simple.
Each time, we choose a set of 10, 20 or 50 images for each person, and

then we learn the threshold, as described in section 3, using all the other
images as test-set. The chosen images for the training set contain as much
face pose variations as it is possible. In Fig. 21 we show an example of a
training set.

In Fig. 22 we present the learned thresholds for the people in test, using
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Figure 21: Set of 20 face images from Bernardo used as training set

different number of images in the training set. The thresholds we get for
the Manikin varies slowly. Bernardo’s threshold decreases quickly when we
increase the number of images in the training set.

Figure 22:

4.6 Attention mechanism

As mentioned in Section 4.2, the visual perception system of a social robot
should imitate the ability of natural vision systems to select the most salient
information from the broad visual input. The use of attention to reduce the
amount of input data has two main advantages: i) the computational load
of the whole system is reduced, and ii) distracting information is suppressed.
An attention mechanism is central to a system requiring a selection of the
relevant information on which the system activities are based.
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Figure 23: a) Overview of the proposed attention mechanism and b) overview
of the tracking algorithm

In this project, a general purpose attention mechanism based on the fea-
ture integration theory has been implemented. It is capable of handling
dynamic environments, and detecting objects of interest, e.g. human faces
or hands, in a fast way. This mechanism integrates bottom-up (data-driven)
and top-down (model-driven) processing. The bottom-up component deter-
mines and selects salient image regions by computing a number of different
features. The top-down component makes use of object templates to filter
out data and only track significant objects. Fig. 23.a shows the overview of
the proposed architecture. This section is centered in the task-independent
stage of a feature integration approach.

4.6.1 Pre-attentive stage

The proposed attentional mechanism uses a number of features computed
from the available input image in order to determine how interesting a region
is in relation to others. These features are independent of the task and they
allow to extract the most interesting regions of the image. Besides, they allow
to distinguish locations where a human may be placed. The chosen features
are colour and intensity contrast, disparity and skin colour (see Fig. 24). In
the final version of the algorithm, the Small Vision System (SVS) provided
by Videre Design (www.videredesign.com) has been employed to extract an
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Figure 24: Colour and intensity contrast computation: a) Left input image;
b) colour contrast saliency map; c) intensity contrast saliency map and d)
disparity map

accurate disparity map. SVS is a set of library functions which implement
stereo algorithms. The disparity map is computed using a correlation-based
algorithm.

Attractivity maps are computed from these features, containing high val-
ues for interesting regions and lower values for other regions in a range of
[0...255]. The integration of these feature maps into a single saliency map
allows to determine what regions of the input image are the most interesting.
Other features can be easily added without changes in the following steps.

Similarly to other models [19][5], the saliency map is computed by com-
bining the feature maps into a single representation. A simple normalized
summation has been used as feature combination strategy because, although
this is the worst strategy when there are a big number of feature maps [20], it
has been demonstrated that its performance is good in systems with a small
number of feature maps. Fig. 25.b shows the saliency map associated to Fig.
25.a.

4.6.2 Semi-attentive stage

Once the saliency map is calculated, it is segmented in order to obtain re-
gions with homogeneous saliency. Among the set of obtained regions, only
big enough regions with a high saliency value are taken into account. Thresh-
olds to select if a region can be considered as a region of interest has been
empirically obtained.

A general problem in attention mechanisms is to avoid revisiting or ig-
noring salient objects of the image when the system is working in a dynamic
environment with moving objects. To solve this problem, it is necessary to
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include in the system a mechanism to avoid extracting the same objects in
different frames, although they will be in different positions in the images.
The way to solve the problem of revisiting or ignoring objects is called “in-
hibition of return” and the proposed attention mechanism implements it by
including an algorithm which tracks the objects extracted from the scene.
This tracking prevents the attention mechanism from wrongly identify them
as new objects.

The tracking algorithm is based on the Bounded Irregular Pyramid (BIP)
[2]. It permits to track non-rigid objects without a previous learning of dif-
ferent object views in real time. To do that, the method uses weighted tem-
plates which follow up the viewpoint and appearance changes of the objects
to track. The templates and the targets are represented using BIPs.

The most salient regions obtained by segmentation of the saliency map
are directly related to homogeneous colour regions of the segmented left input
image. These homogeneous colour regions are the targets to track. Fig. 25.c
shows the selected targets associated to the saliency map in Fig. 25.b. Once
the targets are chosen, the algorithm extracts its hierarchical representations.
Each hierarchical structure is the first template M

(0)
r and its spatial position

is the first region of interest ROI
(0)
r , where r ∈ [1...N ] and N is the number of

salient regions to track. The main steps of the proposed tracking algorithm
(Fig. 23.b) are detailed explained in [21].

Figure 25: Saliency map computation and targets selection: a) Left input
image; b) saliency map; and c) selected targets
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4.6.3 Experimental results

The above described attentional scheme has been examined through experi-
ments which include humans and objects in the scene. Fig. 26a shows a sam-
ple image sequence seen by a stationary binocular camera head. Every 10th
frame is shown. All salient regions are marked by black and white bounding
boxes in the input frames. It must be noted that the activity follows the
objects closely, mainly because the tracker works with the segmented input
image instead of working with the saliency image. Furthermore, the track-
ing algorithm prevents the related object templates from being corrupted by
occlusions. Fig. 26b presents the saliency maps after inhibiting the regions
which have been tracked in each frame. This inhibition avoids that the region
extraction process extracts regions that have been already extracted in pre-
vious frames. It can also be observed how the mechanism follows appearance
and view point changes of the salient objects.

4.7 Vision-based human motion capture

In this section, the implementation of a real-time human motion capture sys-
tem based on computer vision is presented. The goal of this module is to
extract the upper-body movements of a person without using any beacons
or markers, using only two stereo cameras. The key idea behind this system
is the assumption that in order to track the global upper human body mo-
tion, it is not necessary to capture with precision the motion of all its joints.
Particularly, in this work only the movement of the head and hands of the
human are tracked, because they are the most significant items involved in
the human-to-human interaction processes. These are modeled by weighted
templates that are updated and tracked at each frame using the previously
mentioned hierarchical tracking approach. Besides, the silhouette informa-
tion is processed to provide approximated positions for the elbows and an
overall body orientation. The pose of the joints is then extracted through
the use of a kinematic model of the human to track. It is also assumed that
the human motion speed is bounded and that the pose of the different items
to track is related to its last detected pose. By assuming this important
constrains, the proposed system can estimate upper-body human motion at
25 frames per second in a standard PC.

An overview of the proposed system is shown in Fig. 27. The system
has two main modules: a vision module and a joint angle extraction module.
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Figure 26: Example of selected targets: a) left input images; and b) saliency
map associated to a)

The vision module extracts the 3D coordinates of the head and hands of the
human using the attention mechanism previously explained which includes
the hierarchical tracking algorithm in its semi-attentive stage. These 3d co-
ordinates are used by the model-based joint angle extraction module located
at the attentive stage to compute the pose of the upper-body joints by means
of a kinematic model and a inverse kinematics algorithm.

4.7.1 Vision module

The main stage of the vision module is the attention mechanism previously
explained in section 4.6. For this application only two features of the atten-
tional mechanism are relevant: skin colour and disparity. That is, only skin
coloured regions are used by this attentive module.

The disparity map is processed in order to extract the silhouette of the
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Figure 27: Overview of the proposed human motion capture system

person. To do that, the face detection algorithm presented in section 4.4
is used to determine the position of the human face in the input image.
The mean value of the disparity of the localized face is used as threshold to
reduce the number of disparity values in the disparity map. That is, only
a certain number of disparities over this reference and below it are taken
into account, the rest of values are removed from the map. This filtering
is based in the fact that the maximum distance between the head and one
hand of the same person is determined by the length of a stretched arm. We
consider this length not to be superior to one meter. Thus, all disparities
over this threshold are discarded. The result of this first filtering process is
shown in Fig. 28c. Once this new map is obtained, the silhouette of the
person is extracted using connected components (Fig. 28d). The hands of
the person are determined as the biggest skin colour regions located inside
of the silhouette. These hands and the face are the extracted salient regions
which are tracked by the hierarchical tracking algorithm included in the semi-
attentive stage. Therefore, the attentional mechanism is able to compute in
each frame the 2D position of the head and the hands and their disparity
values, as shown in Fig. 28d, providing to the attentive stage the 3D position
of these items.
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Figure 28: a) Left image of an input stereo pair; b) Disparity map; c) Rel-
evant disparities (grey); and d) Extracted silhouette (grey), tracked face
(green) and tracked hands (white).

4.7.2 Model-based pose generator

Our approach is exclusively based on the information obtained from the
stereo vision system of the robot imitator. Thus, it is related to other exper-
iments, e.g. the mimicking experiments shown by Sauser and Billard [22],
but in our case external color marks are not employed. As explained above,
the information extracted for each frame is restricted to 3D positions of head
and hands. Wren and Pentland already developed a system to recover human
motion from these limited cues, using physical constrains and probabilistic
influences [23]. They also use a model to help in the tracking process by
projecting 3D virtual blobs into 2D images taken with the stereo pair and
improve pose estimation in a recursive scheme. The resulting system allows
to track human upper-body movements at 30 fps, but it has to be manu-
ally initialized and requires several computers working on parallel due to its
complexity.

Our system also uses a kinematic human model to translate 3D head
and hands positions to a correct pose. But we base the translation in a
fast analytic inverse kinematics algorithm running over a model that avoids



VISOR FINAL REPORT 50

incorrect poses. This model filters tracked movements and provides, in real-
time, a set of joint angles that conforms a valid human pose and preserves
perceived 3D positions.

Model We have restricted ourselves to capture upper body motion. Thus,
the geometric model contains parts that represent hips, head, torso, arms
and forearms of the human to be tracked. Each of these parts is represented
by a fixed mesh of few triangles, as depicted in Fig. 29. This representation
has the advantage of allowing fast computation of collisions between parts of
the model, which will help in preventing the model from adopting erroneous
poses due to tracking errors.

Each mesh is rigidly attached to a coordinate frame, and the set of coor-
dinate frames is organized hierarchically in a tree. The root of the tree is the
coordinate frame attached to the hips, and represents the global translation
and orientation of the model. Each subsequent vertex in the tree represents
the three-dimensional rigid transformation between the vertex and its par-
ent. This representation is normally called a skeleton or kinematic chain [24]
(Fig. 29). Each vertex, together with its corresponding body part attached
is called a bone. Each bone is allowed to rotate –but not translate– with
respect to its parent around one or more axes. Thus, at a particular time
instant t, the pose of the skeleton can be described by Φ(t) = (R(t), ~s (t), φ(t)),
where R(t) and ~s (t) are the global orientation and translation of the root ver-
tex, and φ(t) is the set of relative rotations between successive children. For
upper-body motion tracking, it is assumed that only φ needs to be updated
–this can be seen intuitively as assuming that the tracked human is seated
on a chair.

Fig. 29 shows the 3D kinematic model used in this system. It has four
degrees of freedom (DOF) in each arm. Three of them are located in the
shoulder, and one in the elbow. Model proportions and dimensions have
been set to average human values, although they can be rescaling by the
algorithm, as it will be discussed in next subsections.

Inverse kinematics As shown in Fig. 30, each arm is modelled with a two-
bone kinematic chain. The parent bone corresponds to the upper arm and is
allowed to rotate around three perpendicular axes. This provides a simplified
model of the shoulder joint. T (w

1 R) is the local transformation between the
upper-arm reference frame O1 and a coordinate frame attached to the torso
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Figure 29: Illustration of the human upper-body kinematic model

Figure 30: Kinematic model of the arm showing local coordinate frames and
elbow circle (see text).

and centered at the shoulder joint w. The bone representing the lower arm
is allowed to rotate around a single axis, corresponding to the elbow joint.
T (2

1R,1~l1) denotes the local transformation between the upper-arm reference

frame O1 and the lower-arm reference frame O2, where 1~l1 = (0, 0, l1)
T , being

l1 the length of the upper-arm, and 2
1R corresponds to the rotation θe about

the elbow axis.
Given a desired position for the end-point of the arm at time instant t+1,

w~p
(t+1)

d , and given the rotation matrices w
1 R(t) and 1

2R
(t) at the previous time

instant t, the problem is then to find the updated matrices w
1 R(t+1) and

1
2R

(t+1). A simple geometric method is employed to solve such problem. See
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(a) (b)

Figure 31: RAPID collision detection: (a) Valid pose. (b) Collision.

[25] for further details.

Enforcement of joint limits and collision avoidance The proposed
inverse kinematics method can obtain an arm pose that will put the hand of
the model in the required position. The resulting pose must be analyzed in
order to determine if it corresponds with a valid and natural body configu-
ration. In this work we consider two limitations: a valid pose must respect
joint limits and cannot produce a collision between different links.

• Detection of joint limit violations. Given the updated shoulder and
elbow rotation matrices, it is necessary to extract joint angles from
these matrices that correspond to the DOFs of the human model.

This process is made by applying a parameterization change to ro-
tation matrices. There is a direct correspondence between Denavith-
Hartenberg (DH) [26] parameters and model joint angles, so the local
axes referred angles are converted to DH parameters using an appro-
priate parameterization.

Once the model DOFs are computed, the system can directly check if
any of them lies beyond its limits.

• Collision detection. We use RAPID [27] as the base of the collision
detection module. This library provides functions that can quickly and
efficiently check collisions between meshes composed by triangles, such
as the ones attached to the links in our model (Fig. 31).
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Figure 32: Alternative poses (red spheres) for a given elbow position.

Once the system detects an incorrect position (i.e. joint limit or collision),
it follows these steps:

1. The system looks for alternative poses (i.e. different arm configura-
tions). Imitation requires to place hands in certain coordinates, but
the elbow is free to move in the circle presented in Fig. 30. Thus,
alternative poses will preserve hand positions, but will move the elbow
in this circle.

2. The motion of the arm should be as smooth as possible. Thus, alter-
natives should be more densely searched near the current elbow loca-
tion. This is implemented by exponentially distributing the alternatives
around the initial incorrect elbow position, as shown below:

θ2i = π
1

100
(n−i)

n

θ2i+1 = −θ2i

i = 0, 1, 2, ...(n − 1) (21)

where θ2i and θ2i+1 correspond to two symmetric alternatives on the
elbow circle with respect to the current pose, and n = N

2
, being N the

number of alternative poses checked when current pose is erroneous.

Fig. 32 shows alternatives given a certain pose. As required, alternative
poses are placed on the elbow circle (Fig. 30) and are more deeply
distributed near the current elbow position.
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3. The system chooses the nearest valid alternative.

4. If there is no valid alternative, the arm remains in the last valid position.

The speed of the process depends on the number of alternatives it needs
to check. A system using a correct number of alternatives should produce
smooth movements and work in real-time even in the case in which all of
them need to be checked.

The alternative evaluation module has been also used when the system is
in a valid pose: in these cases, the two nearest alternatives to current pose
are checked. If one of them locates the elbow in a lower vertical position, and
does not produce violation of limits nor collisions, then the elbow is moved
to that position. This allows the model to adopt more natural poses when
possible.

Scaling the model to fit the human In order to coherently follow the
movements of the human, the 3D model will be scaled to match demonstra-
tor’s height. The scale ratio will be the following:

ratio =
heighthuman

heightmodel

(22)

In our implementation, the model height is 170 cm. The human height
is determined by the 3D position of the human head, provided by the vision
module.

Imitated motions are then easily normalized by simply re-scaling the
model to its original size while preserving the joint angles sequence. In this
way, motions of very different people can be analyzed and compared.

4.7.3 Experimental results

The proposed system has been tested using a STH-DCSG-VARX stereo
system and the Small Vision System software, provided by Videre Design
(www.videredesign.com). This architecture captures and preprocesses stereo
pairs. The size of left and right images is 320x240. The disparity map has
also a size of 320x240.

The face of the demonstrator is detected using the cascade detector de-
scribed in section 4.4. The 3D virtual model used to reproduce perceived
gestures is rendered and animated using OpenSceneGraph, an open source
graphic engine available at www.openscenegraph.org.
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The whole system runs on a 2 GHz Pentium IV computer using Linux
operating system.

The experiments performed to test the Human Motion Capture System
involved different demonstrators moving their hands in a non-controlled en-
vironment. The only imposed requisite was to wear long sleeves. Besides, as
the stereo system has a limited range, the demonstrator was told to stay at
more than 1.50 meters from the cameras. Fig. 33 show the results obtained
by the proposed system at an average rate of more than 25 fps.

As shown in Fig. 33, the generated pose closely resembles the pose of the
human demonstrator. The figure also shows that the disparity map computed
by the Videre system presents some noise. This noise will introduce errors
to the perceived depth of the head and the hands. The first versions of the
proposed system tried to reduce those errors by averaging the disparity values
of the skin pixels in the regions of interest. This lead to better results, but
still the errors in some pixels, specially those located in the borders, tended
to distort the results.

The current version of the system takes into account the confidence value
for the disparity of each pixel provided by the SVS software to reduce the
disparity noise. After several tests, it was decided that the best option was
to simply take as disparity value for each region the one associated with
the highest confidence into that region. Then, the disparity value and the
pixel coordinates of the region centroid are used in combination with camera
parameters to extract (X,Y,Z) coordinates of the head and the hands. In
our system, the distance between the human and the cameras is around 170
cm. For these values, the theoretical depth resolutions for the SVS are under
1 cm - more precisely, 7 mm for a distance of 165 cm. But, as commented
above, there are different sources that introduce errors in the disparity map
and in the tracking algorithm. These errors reduce the effective resolution of
the stereo system. In any case, the average error is less than 5 centimeters.
This is a good enough result as the 3D model will help correcting incorrect
poses.

Fig. 34 shows another sequence in which the demonstrator is performing
fast and large movements. The hands, also, move near the body in some
occasions. Still, the model is able to find a valid and natural pose in these
situations, although sometimes the position of the elbow differs respect to
human pose, as in the second frame.

When there is a substantial reduction in the size of the tracked region,
there are less chances of having high confidence disparity values in the region.
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This was the case in the third frame of Fig. 34, resulting in a pose which is
different to the demonstrated one. Our future work will have to focus on this
issue and improve results in this situation, using information about previous
frames to filter the current position.

4.8 Navigation

4.8.1 Obstacle Avoidance Methods

Navigation in dynamic and real-world environments is a difficult and chal-
lenging task that is considered as a essential problem to resolve for human-
robot interaction. Basically all these environments are characterized by their
complex structure and the aleatory movement of humans and objects in them
and around the robot. Thus the mobile agent has to avoid collisions with
these different obstacles while still reaching its target position in a fast and
efficient way.

Currently, obstacle avoidance is treated by different methods that can be
grouped in two broad categories: global algorithms and local (or reactive)
algorithms. Global approaches have the advantage that they avoid obstacles
with globally optimal paths previously calculated. Usually these methods
employ environment information and process it to make the final movement
of the robot. However, they cannot effectively deal with cases where aleatory
changes in the obstacle movement or in the environment occur. An overview
of this class of methods can be found in Latombe’s work [28]. On the other
hand, local obstacle avoidance methods [29], [30] and [31] treat the problem in
a reactive way, using local information to resolve the problem of navigation.
Thus they are able to adapt the movement of the robot to aleatory changes
in the environment.

The current navigation system implemented for the Nicole platform is
an obstacle avoiding algorithm based in potential fields methods. During
the past few years, potential field methods (PFM) for obstacle avoidance
applications have gained popularity among researchers in the field of mobile
robots. The idea behind all these methods is the existence of imaginary
forces around the robot, attraction forces to represent the target of the final
movement, and repulsive forces to show the different obstacles around the
robot [29][32]. This information is presented in an unified system and process
to obtain the next direction in a specific instant of time.
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Figure 33: Human Motion Capture system: a) Left image of the stereo pair
with head (yellow) and hands (green) regions marked; b) Disparity map; and
c) 3D model showing generated pose.
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Figure 34: Human Motion Capture system: a) Left image of the stereo pair
with head (yellow) and hands (green) regions marked; b) Disparity map; and
c) 3D model showing generated pose.
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Figure 35: Potential fields concepts. Different forces involved.

4.8.2 Potential Fields Algorithm Description

Potential field method has been implemented on Scout Nomad mobile robot
with sensory data. The Sensus 200 is a ring of 16 Polaroid 6500 sonar ranging
modules. The Polaroid 6500 is an acoustic range finding device that has been
widely used in the mobile robotics community. It can measure distances from
6 inches to 35 feet, with a typical absolute accuracy of 1 percent over the
entire range.

In our navigation system the environment information is continuously
acquired using this sonar ring. Thus the robot gets knowledge about different
obstacles around itself. The potential fields algorithm considers measures of
the sonar as repulsive forces FRi. This repulsive force is characterized as a
force vector whose start point is the center of the robot and its direction
corresponds to the negative of the angle to the obstacle. The length of
this vector is related to the pose of the robot (we can consider that nearest
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obstacles provokes more repulsion than far obstacles). Finally, the resultant
repulsive force FR is consequence of the sum of each FRi as:

FR =
i=16
∑

i=0

FRi (23)

On the other hand, the target of the robot generates an attractive force
which can also be approximated as a vector FA. This vector has a start
point in the center of the robot, its direction corresponds to the angle to the
target, and its length is a fixed value defined in the algorithm. Finally, These
two forces, FR and FA are summed and the resultant force R determines the
subsequent direction and speed of travel.

R = FR + FA (24)

Fig. 35 presents potential field concepts. The target generates an attrac-
tion force FA to this point (red line) while obstacles generate repulsive forces
(discontinuous green line in the image). The sum of all these forces is FR,
violet in the figure, the repulsion force that face to FA. The result of the sum
is the final direction of the robot.

4.9 Gesture perception

In this Section, we present a system that extracts the gesture-features of a
human actor from a series of images taken by a single camera. Section 4.9.1
presents the theory behind the gesture recognition with a probabilistic model
using a Bayesian framework. In Section 4.9.2 we address issues of the imple-
mentation of the gesture recognition system including the learning process.
In Section 4.9.3 we show some experiments related with the performance of
the gesture recognition and some issues related to the learned tables. Section
4.9.4 closes with conclusions.

4.9.1 Means of Interaction - Gesture Libraries

The communication from the human to the robot will be based on hand
movements conveying useful information, i.e. hand gestures. This raises two
questions to be answered: 1) What makes a movement to appear as a gesture
and 2) What is a useful set of gestures? To tackle the first question we start
with a concept proposed for human motion analysis. As a gesture is created
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Recognized Gesture Interpretation Action
Draw Circle Turn 360 Rotation

Saggital Waving Come closer Move forward
Horizontal Waving

Left side Step aside (left) Move right
Horizontal Waving

Right side Step aside (right) Move left
Waving Bye-Bye Ignore last gesture Wait

Stop Interaction Switch off system
Pointing gesture Change godfather Proceed to next point

Acknowledgement Perform Action

Table 7: Gesture-Action Mapping

Figure 36: Gesture phases: a) Pre-Stroke b) Stroke c) Post-Stroke

by motion we need to find an appropriate description for the spatio-temporal
behavior. We develop ’atomic’ segments of gestures which we can relate to
our observation sequence.

A suitable model is to divide the gesture into three phases [33]: 1. Pre-
stroke (preparation), 2. Stroke and 3. Post-stroke (retraction). Figure 36 a)
- c) shows an example for a deictic gesture (i.e. pointing gesture). Gesture
recognition systems have often adopted this temporal composition [34, 35].
In [36] the phases are called ’phonemes’ following the terms used in phonology
to describe the principal sounds in human languages. The second question
may be rephrased thus: What kind of knowledge about the world do I need to
provide to the robot? The set of gestures need to be rich enough to trigger a
certain variety of actions and the gestures must be intuitively and effortlessly
performed by the human.

The ’Nicole’ dictionary maps a set of gestures into actions to be executed
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(see table 7). In this table we distinguish between a recognized gesture (e.g.
Waving Bye-Bye) and its interpretation i.e. the meaning it represents. The
interpretation depends on the context given by a higher level module called
action-planner. A simple example is a sequence of two gestures. If the first
gesture is a ”Waving Bye-Bye” and the second is ”Pointing”, the system will
assume a command to switch off the system followed by its acknowledgement.
If the sequence would be the other way round, the system would assume a
command to proceed to the next waypoint which was canceled.

The set of gestures has been organized into three categories: 1) Control
Gestures, 2) Pointing Gestures and 3) Social Gestures. Category 1 gestures
are used to control movements and audio output like ’move to the left’. Such
sets have already been used in the past to control actuated mechanisms [37].
Category 2 are gestures that are meant to shift Nicole’s focus of attention
to a certain direction (deictic gestures). Pointing gestures have already been
used in the past to search and find objects in an image [38]. The last category
covers useful social gestures like ’Waving Bye-Bye’.

4.9.2 Theory

Why using the Bayesian approach? Our goal is to design a proba-
bilistic model using a Bayesian framework to anticipate the gesture given
the observed features. The Bayesian framework can offer combinations of
the whole family of probabilistic tools like Hidden Markov Models (HMMs),
Kalman Filters and Particle Filters and their various modifications. Though,
the Bayesian framework can be used for all kind of system modeling (e.g.
navigation, speech recognition, etc.) they are specially suited for cognitive
processes. Research on the human brain and in its computations for per-
ception and action report that Bayesian methods have proven successful in
building computational theories for perception and sensorimotor control [39].
The process of prediction and update represents an intrinsic implementa-
tion of the mental concept of anticipation. In general, modeling offers the
opportunity to reach a modest dimensionality of the parameter space that
describes the human motion. Bayesian models in particular also maintain
an intuitive approach which can also be understood by non-engineers [40].
Furthermore these methods have already proven their usability in gesture
recognition [34, 35].
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Figure 37: Bayesian Net for the gesture model.

Bayesian Inference The solution using the Bayesian approach assumes
that for a given frame i from all possible frames I and a given gesture g from
all possible gestures G the probability that the atom has value a, which is
P (a|g, i) can be determined. More general, we can express the probability
distribution for all possible values of atom A given all possible gestures G
and frames I with P(A|G, I).

Knowing the conditional probability P(A|G, I) together with the prior
probabilities for the gestures P(G) we are able to apply Bayes rule and
compute the probability distribution for the gestures G given the frame I
and the atom A:

P(G|I, A) = P(G)P(A|G, I) (25)

The term P(A|G, I) is represented as a big look-up table while P (a|g, i) is
the entry of a certain cell that answers the query ”What is the probability
that atom has value a if gestures has value g and frame has value i?”.

The next step is to compute the probability that a certain gesture has
caused the whole sequence of atoms. If we assume that the observed atoms
are independently and identically distributed (i.i.d.) we are able to express
the joint probability by the product of the probabilities for each frame.

P (a1:n|g, i1:n) =
∏

j

P (aj|g, ij) (26)

Where a1:n represents the sequence of n observed values for atom and g a
certain gesture from all gestures G. The jth frame of a sequence of n frames
is represented by ij. Equation 26 is also known as the likelihood computation.

At this point it might be useful to point out that the different ways to
model the world in a Bayesian way usually give names to these approaches.
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As, in our case we assume that any value of the random variable A is similar
likely to appear we may associate the name ’Naive Bayes’ to the approach. It
distinguishes itself from approaches like ’Hidden Markov Models’ or ’Kalman
Filter’ that we assume that the current value at was not influenced by the
previous value at−1. This ’naive’ way to model the world is ,surprisingly, also
the most successful.

We are now able to express the probability of a gesture g that might
have caused the observed sequence of atoms a1:n by plugging equation 26
into equation 25. We formulate this in a recursive way. Assuming that each
frame a new observed atom arrives we can state and expressing the real-time
behavior by using the index t:

P(Gt+1|i1:t+1, a1:t+1) = P(Gt)P(at+1|G, it+1) (27)

We see that the probability distribution of the gestures G at time t+1 know-
ing the observed atoms a until t + 1 is equal to the probability distribution
of G at time t times the probabilities of the current observed atom given the
gestures G and frame i at t+1. The probability distribution of G for t = 0 is
the prior discussed with equation 25. We will later see that, as more observed
atoms arrive, the probability distribution of the gestures will converge to the
correct gesture even if the prior was wrong. This will happen for any fixed
prior, as long as it does not rule out the correct gesture by assigning zero
probability to it.

Due to the number of repetitions and the pace of the performer we can
not assume a fixed number of atoms per gesture. From experiments we can
estimate the mean and variance of a average gesture performance in terms of
a Gaussian distribution N(i obs, σ). With this we can express the probability
that an observed frame i obs maps to an average frame iavg P(iobs — iavg).

P (i obs|i avg) = N(i obs; σ) (28)

We are now able to formulate our Bayesian model by plugging equation
28 into equation 27.

P(Gt+1|i1:t+1, a1:t+1)

= P(Gt)P (i obst+1|i avgt+1)P(at+1|G, it+1)
(29)

We can likewise express our model in a Bayesian Net shown in fig. 37.
It shows the dependencies of the above mentioned variables including the
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Figure 38: Architecture of the GP-System.

displacement dP from the previous section. The rule for classification is
based on the highest probability value being above a certain threshold while
an unknown gesture, i.e. an unknown sequence of atoms produces more than
one gesture-hypothesizes with a significant probability.

4.9.3 Implementation

In [41] the complete system architecture of the guide robot ”Nicole” was
presented as well as the architecture of the GP-System. Figure 38 shows the
main parts of the system architecture omitting the Action Planner which
controls the sequential execution of the tasks inside the interaction-scenario.

The system is divided into three levels starting inside the Observation
Level with the visual sensor dealing with image capture. The image data
is used by the Human (Motion) Tracking module to perform face detection,
face recognition, skin-color detection and object tracking and has been de-
scribed in [41]. We use a face detection module based on haar-like features
as described in [42] and a face recognition based on eigen-objects and PCA
[43]. For skin detection and segmentation we use the CAMshift algorithm
presented in [44]. From the resulting trajectories we calculate the relative
displacement between each frame and the absolute displacement from the
initial position. The latter triggers the starting and end of the gesture. The
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Figure 39: Computation of atoms from the displacement signal.

former undergoes a further discretization while computing principal motion
motion vector referred to as Gesture Atom. This approach is reminiscent of
the concept of phonemes and words from speech recognition as the sequence
of atoms will form a specific gesture. As seen in fig. 39 we calculate the
displacement dx, dy every 4th frame (roughly 4 times per second). The atom
is given by the sector of the displacement vector. In an extended view, at the
Observation Level, the HandFace Tracking module is looking to the displace-
ment vector of the hands waiting for a trigger to start and stop collecting
Atoms. The features extracted in the Observation Level will be used by the
Recognition Level.
The Recognition Module is proceeded by a Learning process of the known
gestures. The Learning Process is accomplished based on set of images pre-
viously stored in a Database of Gestures. With different performers we store
at least 6 sequences for each gesture we later try to recognize. Both the
gestures and the sequences used in the Learning Process are defined in text
files so that each time the program executes the Learning Process looks these
files to find out where from learn the data. In this way we are able to define
what kind of gesture we what to recognize but also the data used to learn a
gesture.

The Learning Process addresses to create a conditional probability table
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expressing P (A|GIavg). The computation of the Learning Process simply
counts the number of atoms that occurs in a frame for a gesture. The size of
the table varies according to the number of frames in each sequence, by taking
the maximal length of the set of sequences for a gesture. Assuming that we
are able to recognize 6 different gestures which can be performed with one or
two hands, we get a table size 18Atoms x Maxframes x 6Gestures. Once
this process is done online this table is ready to be used by the Recognition
Module.

The module of the Recognition Level is implemented using a special li-
brary - ProBT, from ProBayes company, that provides probabilistic compu-
tation tools. Using the ProBT library we start by building a set of variables
needed to compute the Bayesian network. Gesture type, atoms for left and
right and frame are basic variables for our model. In our model it is possible
to have 9 different atoms, see fig. 39 and 6 different gestures. The frame
set is defined varying from 1 to 50. The probabilities of a gesture and a
frame are defined as uniform distributions. To avoid the uncertainty of the
frame-length of a gesture we define a variable, observed frame, which can vary
between 1 and frames∗1.25. The probability of an observed frame is defined
as a bell-shape distribution with mean given by the frame and variance of 1.5.
Our focus is in the gesture type, thus, we built a network using the gesture,
the frame, the observed frame and the left and right atoms, putting then a
question for the gesture type knowing both left and right atoms and also the
observed frame. In each iteration the probability of the gestures is computed
and the result is next used to produce a convergent result to a gesture type.
As referred before the Recognition module stops either using a threshold for
the probability of a gesture or a signal from HandFace Tracking module. At
this moment the Recognition system cleans up and waits for instructions for
a new computation.

The module will recognize a gesture from the known vocabulary. The
action planner will interpret the perceived gesture depending on the context.
The following Interaction Level will initiate actions like speech output or
motion commands according to the interpreted gesture.

4.9.4 Experiments

In our experiments human actors were performing a set of six gestures see 15
times each. The sequences taken by the camera are stored in a database for
future replications. We compute the image trajectories of hands and head,
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Figure 40: Probability evolution for a Bye-Bye gesture input.

the sequence of gesture atoms and the probability values of the gestures. To
provide a ground truth for our image tracker we also collect data from a
magnetic tracker. The contents of this database are publicly available at the
project’s web page (http://paloma.isr.uc.pt/nicole/).

Figure 40 illustrates how the gesture-hypothesizes, evolve as new evi-
dences (atoms) arrive taken from the performance of a Bye-Bye gesture.
After twelve frames the probabilities have converged to the correct gesture-
hypothesis (light-blue). After four frames the probabilities of the two hand
gesture-hypothesis have reached nearly zero. (blue, pink, move left, move
right). Until the sixth frame the probabilities of both head-level gestures
grows (light-blue and purple) which indicates the pre-stroke phase. Con-
versely the probability of the belly-level gesture (Circle) drops slowly towards
zero. After the sixth frame the oscillating left-right movement (and its asso-
ciated atoms) makes the probability of the Bye-Bye-gesture hypothesis rise
and the Pointing-NW-gesture hypothesis drop. The results for the other
gestures are similar.

4.9.5 Bayesian Learning

As both, the gestures and the frame index are discrete values we can express
P (A|GIavg) in form of a conditional probability table. The probabilities can
be learned from training data using a certain number of atom-sequences for
each gesture. A simple approach is the one known as Histogram-learning. It
counts the number of different atom-values that appear for a gestures along
the frames. To overcome the problem of assigning zero probabilities to events
that have not yet been observed an enhanced version often uses learning of a
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Figure 41: Learned Table P (A|GI avg) for gesture ’Bye-Bye’.

family of Laplace-distributions. Currently we are using a table that is of size
18 x 31 x 6, that is 18 discrete values for the atom (9 for each hand), 31 frames
and 6 gestures. Figure 41 shows a fraction of the table which is the 9 atoms of
the right hand for the first 11 frames and the Bye-Bye gesture. It represents
the ’fingerprint’ of the gesture prototype for waving Bye-Bye. Knowing the
gesture we assume this sequence of atoms to be extracted. More precisely
we assume this sequence of distributions of the random variable atom to
extracted. Of course, like any matrix gained like e.g. PCA or ICA it tries to
show the components that represent. an observation best. The big difference
is, that it keeps an intuitive way to store the information. If we take a look
at fig. 41 we can see, that during the first frames the most likely atom to
be expected is the one that goes Up-Right (UR). This coincides with our
intuition, that while we are starting to perform a Bye-Bye gesture with the
left hand we tend to move up and to the left to gain space to perform the
gesture. At this point it might be useful to explain the we have named the
actions according to the performers point of view (i.e. pointing to his left we
refer as pointing East) while the atoms are named due to the observes point
of view (i.e. pointing to the left will generate right atoms). Several useful
conclusions can be drawn directly from the learned tables, mainly related
from what we saw in 4.9.1 concerning the three phases of a gesture. Related
with this we are also able to infer the position of the the hands (waist, belly
or head).

Looking at fig. 42 we can discuss how the different gestures can be dis-
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Figure 42: Learned Table P (A|GI avg) for gesture ’Pointing NW’.

tinguished intuitively. The gesture of pointing to the northwest (forward and
to the left) is usually performed by the left hand. It shows that during the
first frames the most probable value for an atom is, again Up-Right (UR).
This makes sense as during the Pre-stroke phase both gestures need to reach
the space on the left side of the head. The distinction can be done only after
the seventh frame. The pointing gestures will produce mainly zero-motion
atoms (O) while the waving gestures will have a roughly equal distribution
along the line of oscillation (e.g. left-right).

The discussion on the learned probability tables could also be turned
toward the distinctions of different people (e.g. person A performs the gesture
like this, person B like that) or in the direction of emotional content (e.g.
a person at ease performs the gesture like this, a person who is excited
like that). In any case, keeping the ’fingerprints’ intuitively will make the
evaluation more convincing.

4.9.6 Discussion and results

This work demonstrates that Bayesian approaches provide a robust and reli-
able way to classify gestures in real-time. Using naive Bayesian classification
we are able to anticipate a gesture from its beginning and can take decisions
long before the performance has ended.

We have show that the Bayesian way in which the system stores learned
gestures is intuitive and provides the possibility to draw conclusions directly
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from the look-up tables.
Performance measures were defined to evaluate the skill of anticipation

inside a the context of human-robot interaction.
The whole system is implemented on a mobile platform which provides

the possibility to test social interaction in various scenarios.
We are currently working on a system that maps the anticipated gestures

to an avatar using a similar Bayesian approach presented here for recognition.
We aiming towards a social platform where the impact of imitation between
a human and a machine can be observed.

We hope that the output of the imitation model can also serve as a top-
down approach to help in the tracking process.

Furthermore we want to tackle the problem of empathy by extracting
features that enables use the recognize the intention of a performance. Again,
searching for a solution using a Bayesian framework.

5 Meetings and public demonstrations

5.1 Meetings and researcher exchanges

The kick-off meeting of the VISOR project took place in Coimbra on Sep-
tember 19th. In this meeting, the VISOR objectives were clearly defined
and deliverables, milestones and exchange of researchers within VISOR were
discussed. A brief technical session took also place with presentations by P.
Menezes, R. Marfil, J.P. Bandera and J. Rett. The main theoretical aspects
of VISOR project were defined in these presentations.

The second VISOR meeting took place on December 2nd, 2005 in Mlaga.
The main goals of the meeting were to finish the first VISOR deliverable and
to discuss the organization of a special workshop on Visual based Human-
Robot Interaction, which was held in conjunction with EUROS 2006 in
Palermo (Italy). The final programme of this workshop included eight pa-
pers, and it was a good scenario to discuss different aspects (grasping, human
motion capture, timing of visual and spoken input, tracking...) of the visual
based human-robot interaction. R. Marfil, L. Molina-Tanco and P. Menezes
presented their work in this workshop.

The third VISOR meeting took also place on March 18th, 2006 in Palermo.
Future milestones and researcher exchanges were defined. A first stay was
made by J. Rett, from the ISR group, at the University of Málaga in April
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2006. In this stay, the VISOR project demos were defined. From May to
July 2006, Juan Pedro Bandera and Pedro Núñez, from the ISIS group, were
visitors at Coimbra University. This stay permitted the major part of the
VISOR team to be grouped at Coimbra for three months.

5.2 Coimbra trials

At the end of this stay, on July 2006, the fourth VISOR meeting and the first
demonstration of the VISOR project took place on Coimbra. The technical
aspects of the human motion capture and human-robot interaction applica-
tions were initially presented. The public at Coimbra University then were
able to play with Nicole, the social robot from ISR-Coimbra (Fig. 43) or
to look at how their movements were captured and imitated by a synthetic
model.

5.3 Málaga trials

The results of the previous demo at Málaga highlighted some technical issues
which were tackled over the summer, when a final integration effort was made.
The last VISOR meeting took place in Málaga on September 11th. In an
open-door day, the Coimbra experience was repeated at Málaga (Fig. 44).

6 Conclusions reached

This Topical Research Study has investigated the scientific challenges to the
development of a visual perception system for a socially interactive robot.
These are the main technical conclusions reached by the partners involved in
the project.

The combination of state of the art techniques in face detection and
skin color segmentation constitutes a powerful tool for a socially inter-
active robot. Face detection is without any doubt a must-have skill which
allows the social robot to become aware of the presence of a human in order
to trigger social behaviour. Of course face detection techniques allow a robot
to detect a ’social human’, i.e. one that is willing to interact with the robot
and are thus unsuited to security applications.

In this study, a new approach to face detection has been introduced that
runs at video frame rate. This is achieved by combining skin colour segmen-
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Figure 43: Nicole in front of a godfa-
ther at University of Coimbra (July
2006).

Figure 44: Human motion capture
system demonstrated at University
of Mlaga (September 2006).

tation with detection based on Haar-like features (Section 4.4). However,
computational resources in the social robot must be shared with other tasks,
and thus it is recommended that a face detection behaviour is triggered only
when needed. Such is the choice of the architecture of Section 4.7: once a
face is detected, colour tracking suffices to follow the human. If the face
detection is only fired when required, this means that it can be done inde-
pendently of skin colour, and at many scales, which allows for detection of
humans independently of their race, size, gender or age, with varying lighting
conditions, indoors and outdoors, and at different distances to the robot.

By integrating knowledge on how humans move, and with the support
of fast, robust colour tracking, and depth estimation through stereo
triangulation, this project has demonstrated the feasibility of visual real-
time human motion capture which will endow an anthropomorphic robot
with an essential social skill: the ability to imitate human motion, using
only its own sensors (Section 4.7). Real-time, visual human motion capture
will allow the social robot to give real-time feedback to the human as to how
the demonstrated motion is being understood.
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Stereo triangulation requires a calibrated camera pair. If stereo vision
is not available, monocular vision can still be used by the social robot for
gesture recognition. This work has investigated Bayesian approaches to
gesture recognition. We have demonstrated that they provide a robust and
reliable way to classify gestures in real-time. Using naive Bayesian classifi-
cation we are able to anticipate a gesture from its beginning and can take
decisions long before the performance has ended. The developed architec-
ture allows the implementation of the gesture recognition system on a mobile
platform which provides the possibility to test social interaction in various
scenarios.

7 Impact and disseminations of results

7.1 Public deliverables

• R. Marfil and J. Rett, ”Skin Colour Detection, Face Detection and Face
Recognition”, Visual Perception System for a Social Robot (VISOR)
Project, Deliverable 1, Institute of Systems and Robotics, Coimbra,
Portugal, December 2005.

• R. Marfil, ”Attentional Mechanism”, Visual Perception System for a
Social Robot (VISOR) Project, Deliverable 2, Grupo de Ingenieŕıa de
Sistemas Integrados, Málaga, Spain, March 2006.

• J.P. Bandera, ”Human motion capture”, Visual Perception System for
a Social Robot (VISOR) Project, Deliverable 3, Grupo de Ingenieŕıa de
Sistemas Integrados, Málaga, Spain, June 2006.

7.2 Publications

• R. Marfil, L. Molina-Tanco, A. Bandera, J.A. Rodŕıguez and F. San-
doval. Pyramid segmentation algorithms revisited, Pattern Recognition
39, pp. 1430-1451, 2006.

• R. Marfil, L. Molina-Tanco, J.A. Rodŕıguez and F. Sandoval. Real-
time object tracking using Bounded Irregular Pyramids, (submitted
the third revised version to Pattern Recognition Letters to satisfy minor
revisions).
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• J. P. Bandera, R. Marfil, L. Molina-Tanco, J. A. Rodŕıguez, A. Bandera
and F. Sandoval. Robot learning of upper-body human motion by ac-
tive imitation, 2006 IEEE RAS International Conference on Humanoid
Robots (accepted).

• J. P. Bandera, L. Molina-Tanco, R. Marfil, A. Bandera and F. San-
doval. An Active Vision System for a Social Robot. (journal paper in
preparation).

• R. Marfil, R. Vázquez-Mart́ın, L. Molina-Tanco, A. Bandera and F.
Sandoval. Fast Attentional Mechanism for a Social Robot, Workshop
on Visual based Human-Robot Interaction (held in conjunction with
EUROS’06), Palermo-Italy, 2006.

• L. Molina-Tanco, J.P. Bandera, J.A. Rodŕıguez, R. Marfil, A. Bandera
and F. Sandoval. A Grid-based Approach to the Body Correspon-
dence Problem in Robot Learning by Imitation. Workshop on Visual
based Human-Robot Interaction (held in conjunction with EUROS’06),
Palermo-Italy, 2006.

• P. Menezes, F. Lerasle and J. Dias. Visual Tracking Based Modalities
Dedicated to a Robot Companion, Workshop on Visual based Human-
Robot Interaction (held in conjunction with EUROS’06), Palermo-Italy,
2006.

• Rett, J., Dias, J. Visual based human motion analysis: Mapping ges-
tures using a puppet model. Proceedings of EPIA 05, Lecture Notes in
AI Springer Verlag, Berlin, 2005.

• Rett, J., Dias, J. Gesture Recognition Using a Marionette Model and
Dynamic Bayesian Networks (DBNs) Proceedings of ICIAR 2006, Lec-
ture Notes in CS 4142 Springer Verlag, Berlin, 2006

• Rett, J., Dias, J. Gesture Recognition based on Visual-Inertial Data -
Registering Gravity in the Gesture Plane. To appear in: Proceedings
of the Colloquium of Automation, Salzhausen 2005/2006, 2006 - (Best
Paper Award)

• Rett, J., Dias, J. Bayesian Learning and Gesture Anticipation in the
context of Human-Robot Interaction. Submitted to ICRA’07.
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7.3 PhD projects

The VISOR project has partially granted a number of PhD students both at
Coimbra University and University of Málaga. What follows is a list of their
names and the subjects of their research in the area of social robotics.

7.3.1 Awarded

• Rebeca Marfil. Tracking objects with the Bounded Irregular Pyramid.,
Ph.D. Dissertation, Dpto. Tecnoloǵıa Electrónica, Universidad de Málaga.
May 2006.

The main contributions of this Thesis are:

– The implementation and detailed analysis of a new pyramidal
structure for image processing: the Bounded Irregular Pyramid
(BIP). The key idea of this pyramid is to combine the advantages
of regular and irregular pyramids within the same structure. To
do that regular and irregular data structures as well as regular and
irregular decimation processes are mixed in a novel way to build
the BIP. This pyramid allows to process images ten times quicker
than the existing irregular pyramids with similar accuracy. This
reduction of the computational time makes it possible to use the
BIP in real-time applications.

– The development of a new template-based target representation
scheme using the Bounded Irregular Pyramid. This template com-
bines colour and spatial information. The way in which this tem-
plate is updated allows to include information of previous tem-
plates in order to avoid tracking errors due to appearance changes
of the object or occlusions. Besides, because of the structure of
the BIP, the proposed target representation approach allows to
take into account neighbourhood information of each pixel of the
template in the tracking process.

– The implementation of a tracking algorithm based on template
matching. This algorithm takes advantage of the hierarchical
structure of the template representation to perform the template
matching in a hierarchical way. This approach makes possible to
simultaneously track several objects without a high increase of the
computational cost. A version of the tracking algorithm developed
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in this Thesis is employed in the attention mechanism described
in Section 4.6, and subsequently in the human motion capture
system described in Section 4.7.

7.3.2 In progress

• Pedro Núñez.

The research is focused at an human-robot interaction system for in-
door environment. The robotic platform includes a navigation system
based in a Simultaneous Localisation and Map building (SLAM) with
landmarks extracted with a laser range sensor. After the robot is local-
ized in the world, it will be able to interact with humans using visual
(face and gesture recognition) and audio information.

• Ricardo Vázquez-Mart́ın.

This research is focused on simultaneous localization and map building
(SLAM) problems for mobile robots in structured (indoor) and un-
structured (outdoor) environments. The implementation of the SLAM
algorithm is based on the extended Kalman filter (EKF-SLAM) and
use several techniques and sensors to extract landmarks from the en-
vironment. Laser scans are used in indoor like environments and an
attention mechanism based on active vision, using a stereo vision sys-
tem, is used for indoor and outdoor environments.

• Juan Pedro Bandera.

This thesis focus on the development of a vision-based learning by
imitation system. The main objective is to make a humanoid robot
recognize human gestures in typical social interaction scenarios. This
involves the implementation of the human motion capture system de-
scribed in this report, the analysis and parameterization of perceived
movements and the translation of these movements from human to
humanoid.

• Joerg Rett.

This thesis focus in robot vision for human machine interaction. The
development is focused on systems to be implemented on autonomous
platforms, mainly in the interface between humans and robots (e.g.
mobile robots). To make such a system reliable several input modalities
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need to be integrated. The author is currently creating an interface that
translates and elevates occurrences in the image-based level to higher
levels of perception.

8 Self assesment

The project achieved different tangible goals, which are also presented on the
project’s web page (http://www.grupoisis.uma.es/visor/VIsual System for a
SOcial Robot-Home.htm).

The research inside the project resulted in one journal publication, six
publications at conferences, one presentation in a colloquium for later pub-
lication , two journal submissions, and one submission to a conference (See
Section 7). Four public deliverables were produced including this final re-
port, which are accessible through the project’s web page. o Two proto-
types were developed. The Social Robot Nicole, a multipurpose platform
to investigate social interaction between humans and robots, and a real-
time, vision-based human motion capture system that can estimate upper-
body motion from a camera pair. The prototypes have been presented to
the public during two demo events. The first event took place on Monday
10.July 2006 at the University of Coimbra, Polo 2 in Coimbra, Portugal,
the second event was hold on Monday 11.September 2006 at the Technol-
ogy Park in Mlaga, Spain. The events have produced additional mater-
ial like movies and posters that are accessible through the project’s web
page (http://www.grupoisis.uma.es/visor/VIsual System for a SOcial Robot-
Home.htm).

One workshop was organized at an international conference (EUROS-
2006) to foster the work in the field of Human-Robot Interaction. The In-
ternational Workshop on Vision Based Human-Robot Interaction was held
inside the EUROS-2006 conference on Saturday 18. March 2006 in Palermo,
Italy and its content can be accessed at http://paloma.isr.uc.pt/ hri06/, the
event’s web page.
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